A Video-Based Spatio-temporal Biometric Template Representation of the Spontaneous Pupillary Oscillations: A Pilot Experiment

  • Fabiola M. Villalobos-Castaldi
  • Ernesto Suaste-Gómez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)

Abstract

In this paper, we introduced a new video-based spatio-temporal identification system and we also presented our initial identity authentication results based on the spontaneous pupillary oscillation features. We demonstrated that this biometric trait has the capability to provide enough discriminative information to authenticate the identity of a subject. We described the methodology to compute a spatio-temporal biometric template recording the pupil area changes from a video sequence acquired at constant light conditions. To our knowledge, no attempts were made in order to distinguish individuals based on the spatio-temporal representations computed from the normal dilation/contraction condition of the pupil. In preliminary experiments, for the privately collected database, we observe that Equal Error occurs at a threshold of 5.812 and the error is roughly 0.4356%.

Keywords

Spatio-temporal biometric template spontaneous pupillary oscillations hippus 

References

  1. 1.
    Basit, A., Javed, M.Y., Masood, S.: Non-circular Pupil Localization in Iris Images. In: International Conference on Emerging Technologies, IEEE-ICET 2008, Rawalpindi, Pakistan (2008)Google Scholar
  2. 2.
    Longtin, A.: Nonlinear Oscillations, Noise and Chaos in Neural Delayed Feedback department of Piysics, McGill University, Montréal, Canada (1989)Google Scholar
  3. 3.
    Wilhelm, B., Giedke, H., Dtke, H., Bittner, E., Hofmann, A., Wilhelm, H.: Daytime variations in central nervous system activation measured by a pupillographic sleepiness test. J. Sleep Res. 10, 1–7 (2001)CrossRefGoogle Scholar
  4. 4.
    Heaver, B.: Psychophysiological Indices of Recognition Memory, University of Sussex (2011)Google Scholar
  5. 5.
    Toth, B.: Biometric Liveness Detection. Information Security Bulletin 10, 291 (2005)Google Scholar
  6. 6.
    Boyina, S.R., Anu, H., Moneca, K., Mahalakshmi Malini, G., Priyadharshini, R.: Pupil Recognition Using Wavelet And Fuzzy Linear Discriminant Analysis For Authentication. International Journal of Advanced Engineering Technology, IJAET III(II) (2012)Google Scholar
  7. 7.
    Cheung, F.: Iris Recognition, Department of Computer Science and Electrical Engineering, The University of Queensland (1999)Google Scholar
  8. 8.
    Frederick, W., Wheeler, A.G., Perera, A., Abramovich, G., Yu, B., Tu, P.H.: Stand-off Iris Recognition System. In: Biometrics: Theory, Applications and Systems, BTAS 2008 (2008)Google Scholar
  9. 9.
    Calcagnini, G., Censi, F., Lino, S., Cerutti, S.: Spontaneous Fluctuations of Human Pupil Reflect Central Autonomic Rhythms. Methods of Information in Medicine (2000)Google Scholar
  10. 10.
    Bouma, H., Baghuis, L.C.J.: Hippus Of The Pupil: Periods of Slow Oscillations of Unknown Origin. Vision Res., vol. II, pp. 134–151 (1971)Google Scholar
  11. 11.
    Ludtke, H., Wilhelm, B., Adler, M., Schaeffel, F., Wilhelm, H.: Mathematical procedures in data recording and processing of pupillary fatigue waves. Vision Research 38, 2889–2896 (1998)CrossRefGoogle Scholar
  12. 12.
    Matey, J.R., Naroditsky, O., Hanna, K., Kolczynski, R., LoIacono, D.J., Mangru, S., Tinker, M., Zappia, T.M., Zhao, W.Y.: Iris on the Move: Acquisition of Images for Iris Recognition in Less Constrained Environments. JPROC 94(11) (2006)Google Scholar
  13. 13.
    Lawrence Stark, M.D.: Stability, Oscillations, and Noise in the Human Pupil Servomechanism. In: Proceedings of the Ire (1959)Google Scholar
  14. 14.
    Warga, M., Lüdtke, H., Wilhelm, H., Wilhelm, B.: How do spontaneous pupillary oscillations in light relate to light intensity? Vision Research 49, 295–300 (2009)CrossRefGoogle Scholar
  15. 15.
    Teikari, P.: Automated Pupillometry, Helsinki University of Technology, Centre for Metrology and accreditation, Metrology Research Institute (2007)Google Scholar
  16. 16.
    Bednarik, R., Kinnunen, T., Mihaila, A., Fränti, P.: Eye-Movements as a Biometric. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 780–789. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    da Costa, R.M., Gonzaga, A.: Dynamic Features for Iris Recognition. IEEE Transactions on Systems, Man, And Cybernetics—Part B: Cybernetics 42(4) (2012)Google Scholar
  18. 18.
    Ojala, S.: Biometric Authentication in Real-Time Large-Scale Applications Dynamic Features for Iris Recognition, Department of Electrical and Communications Engineering (2005)Google Scholar
  19. 19.
    Pamplona, V.F., Oliveira, M.M., Baranoski, G.V.G.: Photorealistic Models for Pupil Light Reflex and Iridal Pattern Deformation. ACM Transactions on Graphics (TOG) SIGGRAPH 2010 28(4), 106:1–106:12 (2009)Google Scholar
  20. 20.
    Liu, X., Chen, T.: Video-Based Face Recognition Using Adaptive Hidden Markov Models. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2003, pp. 340–345 (2003)Google Scholar
  21. 21.
    Daugman, J.: How Iris RecognitionWorks (2004)Google Scholar
  22. 22.
    Ernesto Suaste webpage, http://sugoergaleria.blogspot.mx/ (last acceded January 2013)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabiola M. Villalobos-Castaldi
    • 1
  • Ernesto Suaste-Gómez
    • 1
  1. 1.Center of Research and Advanced Studies of the National Polytechnic InstituteMexico City, D.F.Mexico

Personalised recommendations