Evaluating Shape Descriptors for Detection of Maya Hieroglyphs

  • Edgar Roman-Rangel
  • Jean-Marc Odobez
  • Daniel Gatica-Perez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7914)

Abstract

In this work we address the problem of detecting instances of complex shapes in binary images. We investigated the effects of combining DoG and Harris-Laplace interest points with SIFT and HOOSC descriptors. Also, we propose the use of a retrieval-based detection framework suitable to deal with images that are sparsely annotated, and where the objects of interest are very small in proportion to the total size of the image. Our initial results suggest that corner structures are suitable points to compute local descriptors for binary images, although there is the need for better methods to estimate their appropriate characteristic scale when used on binary images.

Keywords

Shape detection image retrieval Maya hieroglyphs 

References

  1. 1.
    Thompson, J.E.S.: A Catalog of Maya Hieroglyphs. University of Oklahoma Press, Norman (1962)Google Scholar
  2. 2.
    Macri, M., Looper, M.: The New Catalog of Maya Hieroglyphs. The Classic Period Inscriptions, vol. 1. University of Oklahoma Press, Norman (2003)Google Scholar
  3. 3.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Mikolajczyk, K., Schmid, C.: Scale and Affine Interest Point Detectors. International Journal of Computer Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar
  5. 5.
    Roman-Rangel, E., Pallan, C., Odobez, J.-M., Gatica-Perez, D.: Analyzing Ancient Maya Glyph Collections with Contextual Shape Descriptors. International Journal in Computer Vision, Special Issue in Cultural Heritage and Art Preservation 94(1), 101–117 (2011)CrossRefGoogle Scholar
  6. 6.
    Hu, M.-K.: Visual Pattern Recognition by Moment Invariants. IEEE Transactions on Information Theory 8(2), 179–187 (1962)MATHCrossRefGoogle Scholar
  7. 7.
    Zahn, C.T., Roskies, R.Z.: Fourier Descriptors for Plane Close Curves. IEEE Transactions on Computers 21(3), 269–281 (1972)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Zhang, D., Lu, G.: Review of Shape Representation and Description Techniques. Pattern Recognition 37(1), 1–19 (2004)MATHCrossRefGoogle Scholar
  9. 9.
    Yang, M., Kpalma, K., Ronsin, J.: A Survey of Shape Feature Extraction Techniques. In: Pattern Recognition, pp. 43–90 (2008)Google Scholar
  10. 10.
    Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  11. 11.
    Viola, P.A., Jones, M.J.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2001)Google Scholar
  12. 12.
    Payet, N., Todorovic, S.: From Contours to 3D Object Detection and Pose Estimation. In: IEEE International Conference on Computer Vision (November 2011)Google Scholar
  13. 13.
    Ferrari, V., Fevrier, L., Jurie, F., Schmid, C.: Groups of Adjacent Contours for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(1), 36–51 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Edgar Roman-Rangel
    • 1
  • Jean-Marc Odobez
    • 2
    • 3
  • Daniel Gatica-Perez
    • 2
    • 3
  1. 1.University of GenevaSwitzerland
  2. 2.Idiap Research InstituteSwitzerland
  3. 3.École Polytechnique Fédérale de Lausanne (EPFL)Switzerland

Personalised recommendations