Merging Overlapping Depth Maps into a Nonredundant Point Cloud

  • Tomi Kyöstilä
  • Daniel Herrera C.
  • Juho Kannala
  • Janne Heikkilä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

Combining long sequences of overlapping depth maps without simplification results in a huge number of redundant points, which slows down further processing. In this paper, a novel method is presented for incrementally creating a nonredundant point cloud with varying levels of detail without limiting the captured volume or requiring any parameters from the user. Overlapping measurements are used to refine point estimates by reducing their directional variance. The algorithm was evaluated with plane and cube fitting residuals, which were improved considerably over redundant point clouds.

Keywords

point cloud simplification surface modeling 

References

  1. 1.
    Moenning, C., Dodgson, N.: Intrinsic point cloud simplification. In: Proc. 14th GraphiCon., vol. 14 (2004)Google Scholar
  2. 2.
    Song, H., Feng, H.: A global clustering approach to point cloud simplification with a specified data reduction ratio. Computer-Aided Design 40(3), 281–292 (2008)CrossRefGoogle Scholar
  3. 3.
    Yu, Z., Wong, H., Peng, H., Ma, Q.: ASM: An adaptive simplification method for 3D point-based models. Computer-Aided Design 42(7), 598–612 (2010)CrossRefGoogle Scholar
  4. 4.
    Shi, B., Liang, J., Liu, Q.: Adaptive simplification of point cloud using k-means clustering. Computer-Aided Design 43(8), 910–922 (2011)CrossRefGoogle Scholar
  5. 5.
    Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J., Yang, R., Nistér, D., Pollefeys, M.: Real-time visibility-based fusion of depth maps. In: IEEE 11th International Conference on Computer Vision (ICCV), pp. 1–8 (2007)Google Scholar
  6. 6.
    Labatut, P., Pons, J.P., Keriven, R.: Robust and efficient surface reconstruction from range data. Comput. Graph. Forum 28(8), 2275–2290 (2009)CrossRefGoogle Scholar
  7. 7.
    Newcombe, R., Davison, A., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136 (2011)Google Scholar
  8. 8.
    Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., McDonald, J.: Kintinuous: Spatially Extended KinectFusion. Technical report, MIT CSAIL (2012)Google Scholar
  9. 9.
    Roth, H., Vona, M.: Moving Volume KinectFusion. In: British Machine Vision Conference (BMVC) (2012)Google Scholar
  10. 10.
    Heredia, F., Favier, R.: Kinect Fusion extensions to large scale environments (2012) (accessed November 19, 2012)Google Scholar
  11. 11.
    Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. In: The 12th International Symposium on Experimental Robotics (ISER), vol. 20, pp. 22–25 (2010)Google Scholar
  12. 12.
    Habbecke, M., Kobbelt, L.: A surface-growing approach to multi-view stereo reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2007)Google Scholar
  13. 13.
    Herrera C.,D., Kannala, J., Heikkilä, J.: Joint depth and color camera calibration with distortion correction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2012)Google Scholar
  14. 14.
    Mendel, J.: Lessons in Estimation Theory for Signal Processing, Communications, and Control. Prentice Hall (1995)Google Scholar
  15. 15.
    Jancosek, M., Shekhovtsov, A., Pajdla, T.: Scalable multi-view stereo. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1526–1533 (2009)Google Scholar
  16. 16.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2000)Google Scholar
  17. 17.
    Ylimäki, M., Kannala, J., Holappa, J., Heikkilä, J., Brandt, S.: Robust and accurate multi-view reconstruction by prioritized matching. In: International Conference on Pattern Recognition (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tomi Kyöstilä
    • 1
  • Daniel Herrera C.
    • 1
  • Juho Kannala
    • 1
  • Janne Heikkilä
    • 1
  1. 1.University of OuluOuluFinland

Personalised recommendations