On-line Stereo Self-calibration through Minimization of Matching Costs

  • Robert Spangenberg
  • Tobias Langner
  • Raúl Rojas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

This paper presents an approach to the problem of on-line stereo self-calibration. After a short introduction of the general method, we propose a new one, based on the minimization of matching costs. We furthermore show that the number of matched pixels can be used as a quality measure. A Metropolis algorithm based Monte-Carlo scheme is employed to reliably minimize the costs. We present experimental results in the context of automotive stereo with different matching algorithms. These show the effectiveness for the calibration of roll and pitch angle offsets.

Keywords

self-calibration stereo vision matching costs 

References

  1. 1.
    Dang, T., Hoffmann, C., Stiller, C.: Continuous stereo self-calibration by camera parameter tracking. Trans. Img. Proc. 18(7), 1536–1550 (2009), http://dx.doi.org/10.1109/TIP.2009.2017824 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gehrig, S.K., Rabe, C.: Real-Time Semi-Global Matching on the CPU. In: Proceedings of the IEEE Computer Vision and Pattern Recognition Workshops, San Francisco, CA, USA, pp. 85–92 (June 2010)Google Scholar
  3. 3.
    Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Asian Conference on Computer Vision, Queenstown, New Zealand (November 2010)Google Scholar
  4. 4.
    Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)CrossRefGoogle Scholar
  5. 5.
    Hirschmüller, H., Gehrig, S.K.: Stereo matching in the presence of sub-pixel calibration errors. In: CVPR, pp. 437–444. IEEE (2009)Google Scholar
  6. 6.
    Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1582–1599 (2009)CrossRefGoogle Scholar
  7. 7.
    Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing In Science & Engineering 9(3), 90–95 (2007)CrossRefGoogle Scholar
  8. 8.
    Kramm, S., Miche, P., Bensrhair, A.: Self calibration of a road stereo vision system through correlation criterions. In: 2006 IEEE Intelligent Vehicles Symposium, pp. 36–41 (2006)Google Scholar
  9. 9.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press (2003), http://www.cambridge.org/0521642981, http://www.inference.phy.cam.ac.uk/mackay/itila/
  11. 11.
    Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994), http://dl.acm.org/citation.cfm?id=200241.200258 CrossRefGoogle Scholar
  12. 12.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert Spangenberg
    • 1
  • Tobias Langner
    • 1
  • Raúl Rojas
    • 1
  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations