FAST-PVE: Extremely Fast Markov Random Field Based Brain MRI Tissue Classification

  • Jussi Tohka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7944)

Abstract

We present an extremely fast method named FAST-PVE for tissue classification and partial volume estimation of 3-D brain magnetic resonance images (MRI) using a Markov Random Field (MRF) based spatial prior. The tissue classification problem is central to most brain MRI analysis pipelines and therefore solving it accurately and fast is important. The FAST-PVE method is experimentally confirmed to tissue classify a standard MR image in under 10 seconds with the quantitative accuracy similar to other state of art methods. A key component of the FAST-PVE method is the fast ICM algorithm, which is generally applicable to any MRF-based segmentation method, and formally proven to produce the same segmentation result as the standard ICM algorithm.

Keywords

Segmentation brain imaging magnetic resonance imaging 

References

  1. 1.
    Dale, A., Fischl, B., Sereno, M.: Cortical surface-based analysis. I. segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999)CrossRefGoogle Scholar
  2. 2.
    Ashburner, J., Friston, K.J.: Voxel-based morphometry–the methods. Neuroimage 11(6 pt. 1), 805–821 (2000)CrossRefGoogle Scholar
  3. 3.
    Tohka, J., Dinov, I.D., Shattuck, D.W., Toga, A.W.: Brain MRI tissue classification based on local Markov random fields. Magn. Reson. Imaging 28(4), 557–573 (2010)CrossRefGoogle Scholar
  4. 4.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)CrossRefGoogle Scholar
  5. 5.
    Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 13(5), 856–876 (2001)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Brady, M., Smith, S.: Segmentation of brain mr images through a hidden random markov field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)CrossRefGoogle Scholar
  7. 7.
    Tohka, J., Zijdenbos, A., Evans, A.: Fast and robust parameter estimation for statistical partial volume models in brain MRI. Neuroimage 23(1), 84–97 (2004)CrossRefGoogle Scholar
  8. 8.
    Evans, A.C.: Large-scale morphometric analysis of neuroanatomy and neuropathology. Anat. Embryol (Berl) 210(5-6), 439–446 (2005)CrossRefGoogle Scholar
  9. 9.
    Bellec, P., Carbonell, F.M., Perlbarg, V., Lepage, C., Lyttelton, O., Fonov, V., Janke, A., Tohka, J., Evans, A.C.: A neuroimaging analysis kit for matlab and octave. In: Proceedings of the 17th International Conference on Functional Mapping of the Human Brain (2011)Google Scholar
  10. 10.
    Gaser, C.: VBM8 toolbox, http://dbm.neuro.uni-jena.de/vbm/
  11. 11.
    Koo, J., Evans, A., Gross, W.: 3-D brain tissue classification on FPGAs. IEEE Trans. Image Proc. 18, 2735–2746 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Li, S.: Markov Random Field Modeling in Image Analysis. Springer, London (2009)MATHGoogle Scholar
  13. 13.
    Santago, P., Gage, H.D.: Quantification of MR brain images by mixture density and partial volume modeling. IEEE Trans. Med. Imaging 12(3), 566–574 (1993)CrossRefGoogle Scholar
  14. 14.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 3rd edn. The Art of Scientific Computing. Cambridge University Press (2007)Google Scholar
  15. 15.
    Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley-Interscience, New York (1987)MATHCrossRefGoogle Scholar
  16. 16.
    Manjon, J., Tohka, J., Garcia-Marti, G., Carbonell-Caballero, J., Lull, J., Marti-Bonmati, L., Robles, M.: Robust MRI brain tissue parameter estimation by multi-stage outlier detection. Magn. Reson. Med. 59, 866–873 (2008)CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Adah, T., Xuan, J., Szabo, Z.: Magnetic resonance image analysis by information theoretic criteria and stochastic site models. IEEE Trans. Inform. Tech. Biomed. 5(2), 150–158 (2001)CrossRefGoogle Scholar
  18. 18.
    Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B 48(3), 259–302 (1986)MathSciNetMATHGoogle Scholar
  19. 19.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Patt. Analysis Mach. Intell. 30, 1068–1080 (2008)CrossRefGoogle Scholar
  20. 20.
    Huang, F., Narayan, S., Wilson, D., Johnson, D., Zhang, G.Q.: A fast iterated conditional modes algorithm for water-fat decomposition in mri. IEEE Trans. Med. Imaging 30, 1480–1492 (2011)CrossRefGoogle Scholar
  21. 21.
    Collins, L., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A.: Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 17(3), 463–468 (1998)CrossRefGoogle Scholar
  22. 22.
    Kwan, R.S., Evans, A., Pike, G.: MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imag. 18(11), 1085–1097 (1999)CrossRefGoogle Scholar
  23. 23.
    Manjon, J.V., Tohka, J., Robles, M.: Improved estimates of partial volume coefficients from noisy brain MRI using spatial context. Neuroimage 53(2), 480–490 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jussi Tohka
    • 1
  1. 1.Department of Signal ProcessingTampere University of TechnologyTampereFinland

Personalised recommendations