Approximations of Gaussian Process Uncertainties for Visual Recognition Problems
Abstract
Gaussian processes offer the advantage of calculating the classification uncertainty in terms of predictive variance associated with the classification result. This is especially useful to select informative samples in active learning and to spot samples of previously unseen classes known as novelty detection. However, the Gaussian process framework suffers from high computational complexity leading to computation times too large for practical applications. Hence, we propose an approximation of the Gaussian process predictive variance leading to rigorous speedups. The complexity of both learning and testing the classification model regarding computational time and memory demand decreases by one order with respect to the number of training samples involved. The benefits of our approximations are verified in experimental evaluations for novelty detection and active learning of visual object categories on the datasets C-Pascal of Pascal VOC 2008, Caltech-256, and ImageNet.
Keywords
Training Sample Gaussian Process Target Class Novelty Detection Memory DemandReferences
- 1.Barla, A., Odone, F., Verri, A.: Histogram intersection kernel for image classification. In: ICIP, pp. 513–516 (2003)Google Scholar
- 2.Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)Google Scholar
- 3.Bodesheim, P., Rodner, E., Freytag, A., Denzler, J.: An efficient approximation for gaussian process regression. Tech. Rep. TR-FSU-INF-CV-2013-01, Computer Vision Group, Friedrich Schiller University Jena, Germany (2013), http://www.inf-cv.uni-jena.de/dbvmedia/TR_FSU_INF_CV_2013_01.pdf
- 4.Chen, X., Qi, H., Qi, L., Teo, K.L.: Smooth convex approximation to the maximum eigenvalue function. Journal of Global Optimization 30(2), 253–270 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 5.Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR, pp. 248–255 (2009)Google Scholar
- 6.Ebert, S., Larlus, D., Schiele, B.: Extracting structures in image collections for object recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 720–733. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 7.Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Rapid uncertainty computation with gaussian processes and histogram intersection kernels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 511–524. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 8.Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Tech. Rep. 7694, California Institute of Technology (2007), http://authors.library.caltech.edu/7694
- 9.Kapoor, A., Grauman, K., Urtasun, R., Darrell, T.: Gaussian processes for object categorization. IJCV 88(2), 169–188 (2010)CrossRefGoogle Scholar
- 10.Kemmler, M., Rodner, E., Denzler, J.: One-class classification with gaussian processes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 489–500. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 11.Nickisch, H., Rasmussen, C.E.: Approximations for binary gaussian process classfication. JMLR 9, 2035–2078 (2008)MathSciNetMATHGoogle Scholar
- 12.Overton, M.L.: On minimizing the maximum eigenvalue of a symmetric matrix. SIAM Journal on Matrix Analysis and Applications 9(2), 256–268 (1988)MathSciNetMATHCrossRefGoogle Scholar
- 13.Quinonero-Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate gaussian process regression. JMLR 6, 1939–1959 (2005)MathSciNetMATHGoogle Scholar
- 14.Rasmussen, C.E., Nickisch, H.: Gpml gaussian processes for machine learning toolbox (2010), http://mloss.org/software/view/263/
- 15.Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)Google Scholar
- 16.Rodner, E., Freytag, A., Bodesheim, P., Denzler, J.: Large-scale gaussian process classification with flexible adaptive histogram kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 85–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 17.Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Computation 13(7), 1443–1471 (2001)MATHCrossRefGoogle Scholar
- 18.Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. In: NIPS, pp. 1257–1264 (2005)Google Scholar
- 19.Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54(1), 45–66 (2004)MATHCrossRefGoogle Scholar
- 20.Vempati, S., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Generalized rbf feature maps for efficient detection. In: BMVC, pp. 2.1–2.11 (2010)Google Scholar