Advertisement

Abstract

This chapter is on the leader election problem. Electing a leader consists for the processes of a distributed system in selecting one of them. Usually, once elected, the leader process is required to play a special role for coordination or control purposes.

Leader election is a form of symmetry breaking in a distributed system. After showing that no leader can be elected in anonymous regular networks (such as rings), this chapter presents several leader election algorithms with a special focus on non-anonymous ring networks.

Keywords

Anonymous network Election Message complexity Process identity Ring network Time complexity Unidirectional versus bidirectional ring 

References

  1. 19.
    D. Angluin, Local and global properties in networks of processors, in Proc. 12th ACM Symposium on Theory of Computation (STOC’81) (ACM Press, New York, 1981), pp. 82–93 Google Scholar
  2. 20.
    I. Arrieta, F. Fariña, J.-R. Mendívil, M. Raynal, Leader election: from Higham-Przytycka’s algorithm to a gracefully degrading algorithm, in Proc. 6th Int’l Conference on Complex, Intelligent, and Software Intensive Systems (CISIS’12) (IEEE Press, New York, 2012), pp. 225–232 CrossRefGoogle Scholar
  3. 22.
    H. Attiya, M. Snir, M. Warmuth, Computing on an anonymous ring. J. ACM 35(4), 845–876 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 24.
    H. Attiya, J.L. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. (Wiley-Interscience, New York, 2004). 414 pages. ISBN 0-471-45324-2 CrossRefGoogle Scholar
  5. 56.
    H.L. Bodlaender, Some lower bound results for decentralized extrema finding in ring of processors. J. Comput. Syst. Sci. 42, 97–118 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 83.
    E.J.H. Chang, R. Roberts, An improved algorithm for decentralized extrema finding in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979) zbMATHCrossRefGoogle Scholar
  7. 117.
    D. Dolev, M. Klawe, M. Rodeh, An O(nlogn) unidirectional distributed algorithm for extrema finding in a circle. J. Algorithms 3, 245–260 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 134.
    W.R. Franklin, On an improved algorithm for decentralized extrema-finding in circular configurations of processors. Commun. ACM 25(5), 336–337 (1982) MathSciNetCrossRefGoogle Scholar
  9. 184.
    L. Higham, T. Przytycka, A simple efficient algorithm for maximum finding on rings. Inf. Process. Lett. 58(6), 319–324 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 185.
    D.S. Hirschberg, J.B. Sinclair, Decentralized extrema finding in circular configuration of processors. Commun. ACM 23, 627–628 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 197.
    R. Ingram, P. Shields, J.E. Walter, J.L. Welch, An asynchronous leader election algorithm for dynamic networks, in Proc. 23rd Int’l IEEE Parallel and Distributed Processing Symposium (IPDPS’09) (IEEE Press, New York, 2009), pp. 1–12 CrossRefGoogle Scholar
  12. 208.
    E. Korach, S. Moran, S. Zaks, Tight lower and upper bounds for some distributed algorithms for a complete network of processors, in Proc. 4th ACM Symposium on Principles of Distributed Computing (PODC’84) (ACM Press, New York, 1984), pp. 199–207 CrossRefGoogle Scholar
  13. 232.
    G. Le Lann, Distributed systems: towards a formal approach, in IFIP World Congress, (1977), pp. 155–160 Google Scholar
  14. 244.
    N. Malpani, J.L. Welch, N. Vaidya, Leader election algorithms for mobile ad hoc networks, in Proc. 4th Int’l ACM Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIAL-M’00) (ACM Press, New York, 2000), pp. 96–103 CrossRefGoogle Scholar
  15. 288.
    J.K. Pachl, E. Korach, D. Rotem, Lower bounds for distributed maximum-finding algorithms. J. ACM 31(4), 905–918 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 295.
    G.L. Peterson, An O(nlogn) unidirectional algorithm for the circular extrema problem. ACM Trans. Program. Lang. Syst. 4(4), 758–762 (1982) zbMATHCrossRefGoogle Scholar
  17. 335.
    N. Santoro, Design and Analysis of Distributed Algorithms (Wiley, New York, 2007), 589 pages zbMATHGoogle Scholar
  18. 392.
    M. Yamashita, T. Kameda, Computing on anonymous networks, part I: characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996) CrossRefGoogle Scholar
  19. 393.
    M. Yamashita, T. Kameda, Computing on anonymous networks, part II: decision and membership problems. IEEE Trans. Parallel Distrib. Syst. 7(1), 90–96 (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michel Raynal
    • 1
  1. 1.Institut Universitaire de France IRISA-ISTICUniversité de Rennes 1Rennes CedexFrance

Personalised recommendations