Introducing the Vienna Platform for Elastic Processes

  • Stefan Schulte
  • Philipp Hoenisch
  • Srikumar Venugopal
  • Schahram Dustdar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7759)


Resource-intensive tasks are playing an increasing role in business processes. The emergence of Cloud computing has enabled the deployment of such tasks onto resources sourced on-demand from Cloud providers. This has enabled so-called elastic processes that are able to dynamically adjust their resource usage to meet varying workloads.

Traditional Business Process Management Systems (BPMSs) do not consider the needs of elastic processes such as monitoring facilities, tracking the current and future system landscape, reasoning about optimally utilizing resources given Quality of Service constraints, and executing necessary actions (e.g., start/stop servers, move services). This paper introduces ViePEP, a research BPMS capable of handling the aforementioned requirements of elastic processes.


Cloud Computing Load Balancer IEEE Computer Society Smart Grid Service Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management: A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Abouelhoda, M., Issa, S.A., Ghanem, M.: Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support. BMC Bioinformatics 13(77) (2012)Google Scholar
  3. 3.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A View of Cloud Computing. Communications of the ACM 53, 50–58 (2010)CrossRefGoogle Scholar
  4. 4.
    Berbner, R., Spahn, M., Repp, N., Heckmann, O., Steinmetz, R.: Dynamic Replanning of Web Service Workflows. In: Inaugural IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2007), pp. 211–216. IEEE Computer Society, Washington, DC (2007)CrossRefGoogle Scholar
  5. 5.
    Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services. In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computing Systems 25(6), 599–616 (2009)CrossRefGoogle Scholar
  7. 7.
    Cao, Q., Wei, Z.B., Gong, W.M.: An Optimized Algorithm for Task Scheduling Based on Activity Based Costing in Cloud Computing. In: 3rd International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2009), pp. 1–3. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  8. 8.
    Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of Elastic Processes. IEEE Internet Computing 15(5), 66–71 (2011)CrossRefGoogle Scholar
  9. 9.
    Emeakaroha, V.C., Brandic, I., Maurer, M., Breskovic, I.: SLA-Aware Application Deployment and Resource Allocation in Clouds. In: COMPSAC Workshops 2011, pp. 298–303. IEEE Computer Society, Washington, DC (2011)Google Scholar
  10. 10.
    Hallerbach, A., Bauer, T., Reichert, M.: Managing Process Variants in the Process Life Cycle. In: Tenth International Conference on Enterprise Information Systems (ICEIS 2008), vol. ISAS-2, pp. 154–161 (2008)Google Scholar
  11. 11.
    Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J.: On the Use of Cloud Computing for Scientific Workflows. In: IEEE Fourth International Conference on e-Science (eScience 2008), pp. 640–645. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  12. 12.
    Juve, G., Deelman, E.: Scientific Workflows and Clouds. ACM Crossroads 16(3), 14–18 (2010)CrossRefGoogle Scholar
  13. 13.
    Kertesz, A., Kecskemeti, G., Brandic, I.: An Interoperable and Self-adaptive Approach for SLA-based Service Virtualization in Heterogeneous Cloud Environments. Future Generation Computer Systems NN(NN), NN–NN (2013) (forthcoming)Google Scholar
  14. 14.
    Lee, Y.C., Wang, C., Zomaya, A.Y., Zhou, B.B.: Profit-Driven Service Request Scheduling in Clouds. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid 2010), pp. 15–24. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  15. 15.
    Leitner, P., Hummer, W., Dustdar, S.: Cost-Based Optimization of Service Compositions. IEEE Transactions on Services Computing (2012)Google Scholar
  16. 16.
    Li, H., Venugopal, S.: Using Reinforcement Learning for Controlling an Elastic Web Application Hosting Platform. In: 8th International Conference on Autonomic Computing (ICAC 2011), pp. 205–208. ACM, New York (2011)Google Scholar
  17. 17.
    Ludäscher, B., Weske, M., McPhillips, T., Bowers, S.: Scientific Workflows: Business as Usual? In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 31–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the Effectiveness of Process-Oriented Information Systems: Problem Analysis, Critical Success Factors, and Implications. IEEE Transactions on Systems, Man, and Cybernetics, Part C 38(3), 280–291 (2008)CrossRefGoogle Scholar
  19. 19.
    Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments. In: 24th IEEE International Conference on Advanced Information Networking and Applications (AINA 2010), pp. 400–407. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  20. 20.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-Oriented Computing Research Roadmap. In: Service Oriented Computing (SOC). Dagstuhl Seminar Proceedings, vol. 05462, pp. 38–45. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)Google Scholar
  21. 21.
    Rohjans, S., Dänekas, C., Uslar, M.: Requirements for Smart Grid ICT Architectures. In: Third IEEE PES Innovative Smart Grid Technologies (ISGT) Europe Conference. IEEE Computer Society, Washington, DC (2012)Google Scholar
  22. 22.
    Rusitschka, S., Eger, K., Gerdes, C.: Smart Grid Data Cloud: A Model for Utilizing Cloud Computing in the Smart Grid Domain. In: 1st IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 483–488. IEEE Computer Society, Washington, DC (2010)Google Scholar
  23. 23.
    Schuller, D., Lampe, U., Eckert, J., Steinmetz, R., Schulte, S.: Cost-driven Optimization of Complex Service-based Workflows for Stochastic QoS Parameters. In: 19th International Conference on Web Services (ICWS 2012), pp. 66–74. IEEE Computer Society Press, Washington, DC (2012)CrossRefGoogle Scholar
  24. 24.
    Schuller, D., Polyvyanyy, A., García-Bañuelos, L., Schulte, S.: Optimization of Complex QoS-Aware Service Compositions. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 452–466. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Schulte, S., Hoenisch, P., Venugopal, S., Dustdar, S.: Realizing Elastic Processes with ViePEP. In: Zhu, H., Ghose, A., Yu, Q., Perrin, O., Wang, J., Wang, Y., Delis, A., Sheng, Q.Z. (eds.) ICSOC 2012, vol. 7759, pp. 439–442. Springer, Heidelberg (2013)Google Scholar
  26. 26.
    Strunk, A.: QoS-Aware Service Composition: A Survey. In: IEEE 8th European Conference on Web Services (ECOWS), pp. 67–74. IEEE Computer Society, Washington, DC (2010)Google Scholar
  27. 27.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Schulte
    • 1
  • Philipp Hoenisch
    • 1
  • Srikumar Venugopal
    • 2
  • Schahram Dustdar
    • 1
  1. 1.Distributed Systems GroupVienna University of TechnologyAustria
  2. 2.School of Computer Science and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations