Towards the Definition of a Framework Supporting High Level Reliability of Services

  • Firmino Silva
  • Claudia-Melania Chituc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7759)


In today’s networked economy, an increasing need exists for companies to interact dynamically focusing on optimizing their skills and better serve their joint customers. Service oriented computing provides the means to achieve such objectives. This paper presents an approach towards the definition of a framework supporting a choreography of services built according to customer’s requirements. The proposed framework is built on a set of specific metrics that translates the high level reliability of a service, which are calculated at various levels of the choreography, focusing on four main dimensions: technical capacity and performance, product or service purchased, customer satisfaction perspective, and provider’s and business partners’ choreography. This approach is then illustrated and discussed with a case example from the automotive sector.


Business Process Service Composition Service Level Agreement Business Partner Scoring Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-oriented computing: A research roadmap. In: Service Oriented Computing (SOC). Dagstuhl Seminar Proceedings, vol. 05462. IBFI, Schloss Dagstuhl, Germany (2006)Google Scholar
  2. 2.
    Di Nitto, E., Karastoyanova, D., Metzger, A., Parkin, M., Pistore, M., Pohl, K., Silvestri, F., Van den Heuvel, W.-J.: S-Cube: Addressing Multidisciplinary Research Challenges for the Internet of Services. In: Tselentis, G., et al. (eds.) Towards the Future Internet. IOS Press (2009)Google Scholar
  3. 3.
    Papazoglou, M.: Service-Oriented Computing: Concepts, Characteristics and Directions. In: 4th International Conference on Web Information Systems Engineering (WISE 2003) (2003)Google Scholar
  4. 4.
    Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented Computing: State of the Art and Research Challenges. IEEE Computer Society (2007), 0018-9162/07Google Scholar
  5. 5.
    Bichler, M., Lin, K.J.: Service-oriented computing, IT System Perspectives. IEEE Computer 39(3) (2006)Google Scholar
  6. 6.
    S-Cube consortium deliverable, CD-JRA-1.3.3 “Initial Concepts for Specifying End-to-End Quality Characteristics and Negotiating SLAs” (2010), (September 2011)
  7. 7.
    Keller, A., Ludwig, H.: WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services. Journal of Network and Systems Management (2003)Google Scholar
  8. 8.
    Mukhija, A., Rosenblum, D.S., Foster, H., Uchitel, S.: Runtime Support for Dynamic and Adaptive Service Composition. In: Wirsing, M., Hölzl, M. (eds.) Sensoria Project. LNCS, vol. 6582, pp. 585–603. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Schmidt, R.: Web Services Based Architectures to Support Dynamic Inter-organizational Business Processes. In: Jeckle, M., Zhang, L.-J. (eds.) ICWS-Europe 2003. LNCS, vol. 2853, pp. 123–136. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M., Pohl, K.: A journey to highly dynamic, self-adaptive service-based applications. Automated Software Engineering Journal 15(3), 313–341 (2008) ISSN: 0928-8910CrossRefGoogle Scholar
  11. 11.
    Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.: Monitoring and Analyzing Influential Factors of Business Process Performance. In: Published in EDOC 2009 Proc. of the 2009 IEEE (EDOC 2009) (2009)Google Scholar
  12. 12.
    S-Cube consortium deliverable, PO-JRA-1.3.1 “Survey of Quality Related Aspects Relevant for Service-based” (2008), (September 2011)
  13. 13.
    Wetzstein, B., Strauch, S., Leymann, F.: Measuring Performance Metrics of WS-BPEL Service Compositions. In: The Fifth International Conference on Networking and Services (ICNS 2009), Valencia, Spain, April 20-25. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Menasce, D.A.: QoS issues in Web services. IEEE Internet Computing (2002)Google Scholar
  15. 15.
    Karastoyanova, D., Khalaf, R., Schroth, R., Paluszek, M., Leymann, F.: BPEL Event Model. Technical Report 2006/10. University of Stuttgart (2006)Google Scholar
  16. 16.
    S-Cube consortium deliverable, PO-JRA-1.2.3 “Baseline of Adaptation and Monitoring Principles, Techniques, and Methodologies across Functional SBA Layers” (2009), (September 2011)
  17. 17.
    Kazhamiakin, R., Pistore, M., Zengin, A.: Cross-Layer Adaptation and Monitoring of Service-Based Applications. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 325–334. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 269–282. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of instances and classes of Web servisse compositions. In: Proc. IEEE Int. Conf. on Web Services (ICWS 2006), pp. 63–71 (2006)Google Scholar
  20. 20.
    van Moorsel, A.: Metrics for the Internet Age: Quality of Experience and Quality of Business. In: Proceedings of the 5th Int’l Workshop on Performability Modeling of Computer and Communication Systems, Erlangen, September 15-16. Arbeitsberichte des Instituts für Informatik, Universität Erlangen-Nürnberg (2001)Google Scholar
  21. 21.
    Chhetri, M., Lin, J., Goh, S., Zhang, J., Kowalczyk, R., Yan, J.: A coordinated architecture for the agentbased service level agreement negotiation of Web service composition. In: Australian Software Engineering Conference (ASWEC 2006), pp. 90–99 (2006)Google Scholar
  22. 22.
    Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leyman, F.: Monitoring and Analyzing Influencial Factors of Business process performance. In: Proc. 2009 IEEE (EDOC), pp. 141–150 (2009)Google Scholar
  23. 23.
    Wetzstein, B., Zengin, A., Kazhamiakin, R., Marconi, A., Pistore, M., Karastoyanova, D., Leymann, F.: Preventing KPI violations in business processes based on decision tree learning and proactive runtime adaptation. Journal of Systems Integration 3(1), 3–18 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Firmino Silva
    • 1
    • 2
  • Claudia-Melania Chituc
    • 1
  1. 1.Faculty of Engineering, Informatics Engineering DepartmentUniversity of PortoPortugal
  2. 2.Polythechnic Institute of Porto / ISCAPPortugal

Personalised recommendations