A Parallel Thinning Algorithm for Grayscale Images

  • Michel Couprie
  • Nivando Bezerra
  • Gilles Bertrand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7749)

Abstract

Grayscale skeletonization offers an interesting alternative to traditional skeletonization following a binarization. It is well known that parallel algorithms for skeletonization outperform sequential ones in terms of quality of results, yet no general and well defined framework has been proposed until now for parallel grayscale thinning. We introduce in this paper a parallel thinning algorithm for grayscale images, and prove its topological soundness based on properties of the critical kernels framework. The algorithm and its proof, given here in the 2D case, are also valid in 3D. Some applications are sketched in conclusion.

Keywords

Binary Image Gray Scale Grayscale Image Cubical Complex Pattern Recognition Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abeysinghe, S.S., Baker, M., Chiu, W., Ju, T.: Segmentation-free skeletonization of grayscale volumes for shape understanding. In: IEEE International Conference on Shape Modeling and Applications, SMI 2008, pp. 63–71 (2008)Google Scholar
  2. 2.
    Arcelli, C., Ramella, G.: Finding grey-skeletons by iterated pixel removal. Image and Vision Computing 13(3), 159–167 (1995)CrossRefGoogle Scholar
  3. 3.
    Bertrand, G.: On critical kernels. Comptes Rendus de l’Académie des Sciences, Série Math. I(345), 363–367 (2007)MathSciNetGoogle Scholar
  4. 4.
    Bertrand, G., Couprie, M.: Two-dimensional thinning algorithms based on critical kernels. J. of Mathematical Imaging and Vision 31(1), 35–56 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertrand, G., Couprie, M.: Powerful parallel and symmetric 3d thinning schemes based on critical kernels. J. of Mathematical Imaging and Vision (2012) (to appear), doi:10.1007/s10851-012-0402-7Google Scholar
  6. 6.
    Bertrand, G., Everat, J.C., Couprie, M.: Topological approach to image segmentation. In: SPIE Vision Geometry V, vol. 2826, pp. 65–76 (1996)Google Scholar
  7. 7.
    Bertrand, G., Everat, J.C., Couprie, M.: Image segmentation through operators based upon topology. J. of Electronic Imaging 6(4), 395–405 (1997)CrossRefGoogle Scholar
  8. 8.
    Beucher, S.: Segmentation d’images et morphologie mathématique. PhD thesis, École des Mines de Paris, France (1990)Google Scholar
  9. 9.
    Costes, C., Garello, R., Mercier, G., Artis, J.-P., Bon, N.: Convective clouds modelling and tracking by an airborne radar. In: OCEANS 2008, pp. 1–5 (September 2008)Google Scholar
  10. 10.
    Couprie, M., Bezerra, F.N., Bertrand, G.: Topological operators for grayscale image processing. J. of Electronic Imaging 10(4), 1003–1015 (2001)CrossRefGoogle Scholar
  11. 11.
    Dyer, C., Rosenfeld, A.: Thinning algorithms for gray-scale pictures. IEEE Trans. on Pattern An. and Machine Int. 1(1), 88–89 (1979)CrossRefGoogle Scholar
  12. 12.
    Jang, J.-H., Hong, K.-S.: A pseudo-distance map for the segmentation-free skeletonization of gray-scale images. In: Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 2, pp. 18–23 (2001)Google Scholar
  13. 13.
    Kang, K.W., Suh, J.W., Kim, J.H.: Skeletonization of grayscale character images using pixel superiority index. In: IAPR Workshop on Document Analysis Systems (1998)Google Scholar
  14. 14.
    Kong, T.Y.: On topology preservation in 2D and 3D thinning. Int. J. on Pattern Recognition and Artificial Intelligence 9, 813–844 (1995)CrossRefGoogle Scholar
  15. 15.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Computer Vision, Graphics and Image Processing 48, 357–393 (1989)CrossRefGoogle Scholar
  16. 16.
    Le Bourgeois, F., Emptoz, H.: Skeletonization by gradient diffusion and regularization. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 3, pp. 33–36 (2007)Google Scholar
  17. 17.
    Lohou, C., Bertrand, G.: New parallel thinning algorithms for 2d grayscale images. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4117, pp. 58–69 (2000)Google Scholar
  18. 18.
    Mersa, S.S., Darwish, A.M.: A new parallel thinning algorithm for gray scale images. In: IEEE Nonlinear Signal and Image Proc. Conf., pp. 409–413 (1999)Google Scholar
  19. 19.
    Nedzved, A., Uchida, S., Ablameyko, S.: Gray-scale thinning by using a pseudo-distance map. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 2, pp. 239–242 (2006)Google Scholar
  20. 20.
    Pal, S.K.: Fuzzy skeletonization of an image. Pattern Recognition Letters 10, 17–23 (1989)MATHCrossRefGoogle Scholar
  21. 21.
    Ranwez, V., Soille, P.: Order independent homotopic thinning for binary and grey tone anchored skeletons. Pattern Recognition Letters 23(6), 687–702 (2002); Discrete Geometry for Computer ImageryGoogle Scholar
  22. 22.
    Rosenfeld, A.: The fuzzy geometry of image subsets. Pattern Recognition Letters 2, 311–317 (1984)CrossRefGoogle Scholar
  23. 23.
    Saleh, A.M., Bahaa Eldin, A.M., Wahdan, A.-M.A.: A modified thinning algorithm for fingerprint identification systems. In: International Conference on Computer Engineering Systems, ICCES 2009, pp. 371–376 (2009)Google Scholar
  24. 24.
    Whitehead, J.H.C.: Simplicial spaces, nuclei and m-groups. Proceedings of the London Mathematical Society 45(2), 243–327 (1939)CrossRefGoogle Scholar
  25. 25.
    Yu, S.-S., Tsai, W.-H.: A new thinning algorithm for gray-scale images by the relaxation technique. Pattern Recognition 23(10), 1067–1076 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michel Couprie
    • 1
  • Nivando Bezerra
    • 2
  • Gilles Bertrand
    • 1
  1. 1.Laboratoire d’Informatique Gaspard-Monge, Équipe A3SI, ESIEE ParisUniversité Paris-EstFrance
  2. 2.Instituto Federal do Ceará, IFCEMaracanaúBrazil

Personalised recommendations