SARS coronavirus main proteinase

  • Dietmar SchomburgEmail author
  • Ida Schomburg
Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume 10)


EC number

Recommended name

 SARS coronavirus main proteinase


 3C-like protease <2,3> [9,16,38,49,51]

 3CL protease <2> [14,48]

 3cLpro <1,2,3> [7,11,13,16,19,28,38,49,51]

 C30.004 (Merops-ID)


 SARS 3C-like protease <2> [17]

 SARS 3C-like proteinase <2> [15,18,27]

 SARS 3CL protease <2> [31]

 SARS 3CLpro <2> [49]

 SARS CoV main proteinase <2> [1,2,4,5]

 SARS CoVMpro <2> [33]

 SARS Mpro <2> [25]

 SARS coronavirus 3C-like protease <2> [48]

 SARS coronavirus 3C-like proteinase <2> [50]

 SARS coronavirus 3CL protease <2> [20]

 SARS coronavirus main peptidase <2> [23]

 SARS coronavirus main protease <2> [25]

 SARS coronavirus main proteinase <2> [5,33]

 SARS main protease <2> [12,25]

 SARS-3CL protease <2> [48]

 SARS-3CLpro <2> [29,50]

 SARS-CoV 3C-like peptidaseSARS-CoV 3C-like peptidase<2> [24]

 SARS-CoV 3C-like protease<1> [19]

 SARS-CoV 3CL protease <2> [22,30,44,46]

 SARS-CoV 3CLpro <2> [32,36,38,44,45]

 SARS-CoV 3CLpro enzyme <2> [11]

 SARS-CoV Mpro <2> [21,40]

 SARS-CoV main protease <2> [21,26,43]

 SARS-coronavirus 3CL protease <2> [8]

 SARS-coronavirus main protease <2> [47]

 TGEV Mpro

 coronavirus 3C-like protease <1> [19]

 porcine transmissible gastroenteritis virus Mpro

 severe acute respiratory syndrome coronavirus 3C-like protease <2> [41,42]

 severe acute respiratory syndrome coronavirus main protease <2> [21]

 severe acute respiratory syndrome coronavirus main proteinase <2> [33]

CAS registry number




Benzoic Acid Severe Acute Respiratory Syndrome Boronic Acid Wild Type Enzyme Betulinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Xu, T.; Ooi, A.; Lee, H.C.; Wilmouth, R.; Liu, D.X.; Lescar, J.: Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer. Acta Crystallogr. Sect. F, 61, 964-966 (2005)CrossRefGoogle Scholar
  2. 2.
    Zhang, X.W.; Yap, Y.L.: Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg. Med. Chem., 12, 2517-2521 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    Graziano, V.; McGrath, W.J.; DeGruccio, A.M.; Dunn, J.J.; Mangel, W.F.: Enzymatic activity of the SARS coronavirus main proteinase dimer. FEBS Lett., 580, 2577-2583 (2006)CrossRefPubMedGoogle Scholar
  4. 4.
    Tan, J.; Verschueren, K.H.; Anand, K.; Shen, J.; Yang, M.; Xu, Y.; Rao, Z.; Bigalke, J.; Heisen, B.; Mesters, J.R.; Chen, K.; Shen, X.; Jiang, H.; Hilgenfeld, R.: pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol., 354, 25-40 (2005)CrossRefPubMedGoogle Scholar
  5. 5.
    Graziano, V.; McGrath, W.J.; Yang, L.; Mangel, W.F.: SARS CoV main proteinase: The monomer-dimer equilibrium dissociation constant. Biochemistry, 45, 14632-14641 (2006)CrossRefPubMedGoogle Scholar
  6. 6.
    Goetz, D.H.; Choe, Y.; Hansell, E.; Chen, Y.T.; McDowell, M.; Jonsson, C.B.; Roush, B.C.; McKerrow, J.; Craik, C.S.: Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry, 46, 8744-8752 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    Solowiej, J.; Thomson, J.A.; Ryan, K.; Luo, C.; He, M.; Lou, J.; Murray, B.W.: Steady-state and pre-steady-state kinetic evaluation of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro cysteine protease: development of an ion-pair model for catalysis. Biochemistry, 47, 2617-2630 (2008)CrossRefPubMedGoogle Scholar
  8. 8.
    Hamill, P.; Hudson, D.; Kao, R.Y.; Chow, P.; Raj, M.; Xu, H.; Richer, M.J.; Jean, F.: Development of a red-shifted fluorescence-based assay for SARScoronavirus 3CL protease: identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata. Biol. Chem., 387, 1063-1074 (2006)CrossRefPubMedGoogle Scholar
  9. 9.
    Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; Jiang, H.: Binding interaction of quercetin-3-β -galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem., 14, 8295-8306 (2006)CrossRefPubMedGoogle Scholar
  10. 10.
    Niu, C.; Yin, J.; Zhang, J.; Vederas, J.C.; James, M.N.: Molecular docking identifies the binding of 3-chloropyridine moieties specifically to the S1 pocket of SARS-CoV Mpro. Bioorg. Med. Chem., 16, 293-302 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    Ghosh, A.K.; Xi, K.; Grum-Tokars, V.; Xu, X.; Ratia, K.; Fu, W.; Houser, K.V.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D.: Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors. Bioorg. Med. Chem. Lett., 17, 5876-5880 (2007)CrossRefPubMedGoogle Scholar
  12. 12.
    Chang, H.; Chou, C.; Chang, G.: Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride. Biophys. J., 92, 1374-1383 (2007)CrossRefPubMedGoogle Scholar
  13. 13.
    Wu, C.; King, K.; Kuo, C.; Fang, J.; Wu, Y.; Ho, M.; Liao, C.; Shie, J.; Liang, P.; Wong, C.: Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease. Chem. Biol., 13, 261-268 (2006)CrossRefPubMedGoogle Scholar
  14. 14.
    Shao, Y.; Yang, W.; Peng, H.; Hsu, M.; Tsai, K.; Kuo, T.; Wang, A.H.; Liang, P.; Lin, C.; Yang, A.; Wong, C.: Structure-based design and synthesis of highly potent SARS-CoV 3CL protease inhibitors. Chembiochem, 8, 1654-1657 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    Lai, L.; Han, X.; Chen, H.; Wei, P.; Huang, C.; Liu, S.; Fan, K.; Zhou, L.; Liu, Z.; Pei, J.; Liu, Y.: Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase. Curr. Pharm. Des., 12, 4555-4564 (2006)CrossRefPubMedGoogle Scholar
  16. 16.
    Liang, P.: Characterization and inhibition of SARS-coronavirus main protease. Curr. Top. Med. Chem., 6, 361-376 (2006)CrossRefPubMedGoogle Scholar
  17. 17.
    Shi, J.; Song, J.: The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J., 273, 1035-1045 (2006)CrossRefPubMedGoogle Scholar
  18. 18.
    Chen, H.; Wei, P.; Huang, C.; Tan, L.; Liu, Y.; Lai, L.: Only one protomer is active in the dimer of SARS 3C-like proteinase. J. Biol. Chem., 281, 13894-13898 (2006)CrossRefPubMedGoogle Scholar
  19. 19.
    Chen, S.; Hu, T.; Zhang, J.; Chen, J.; Chen, K.; Ding, J.; Jiang, H.; Shen, X.: Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease. Crystal structure with molecular dynamics simulations. J. Biol. Chem., 283, 554-564 (2008)Google Scholar
  20. 20.
    Yang, S.; Chen, S.; Hsu, M.; Wu, J.; Tseng, C.K.; Liu, Y.; Chen, H.; Kuo, C.; Wu, C.; Chang, L.; Chen, W.; Liao, S.; Chang, T.; Hung, H.; Shr, H.; Liu, C.; Huang, Y.; Chang, L.; Hsu, J.; Peters, C.J.; Wang, A.H.; Hsu, M.: Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J. Med. Chem., 49, 4971-4980 (2006)CrossRefPubMedGoogle Scholar
  21. 21.
    Lu, I.; Mahindroo, N.; Liang, P.; Peng, Y.; Kuo, C.; Tsai, K.; Hsieh, H.; Chao, Y.; Wu, S.: Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J. Med. Chem., 49, 5154-5161 (2006)CrossRefPubMedGoogle Scholar
  22. 22.
    Wen, C.; Kuo, Y.; Jan, J.; Liang, P.; Wang, S.; Liu, H.; Lee, C.; Chang, S.; Kuo, C.; Lee, S.; Hou, C.; Hsiao, P.; Chien, S.; Shyur, L.; Yang, N.: Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 50, 4087-4095 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    Lee, T.; Cherney, M.M.; Liu, J.; James, K.E.; Powers, J.C.; Eltis, L.D.; James, M.N.: Crystal structures reveal an induced-fit binding of a substrate-like aza-peptide epoxide to SARS coronavirus main peptidase. J. Mol. Biol., 366, 916-932 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    Yin, J.; Niu, C.; Cherney, M.M.; Zhang, J.; Huitema, C.; Eltis, L.D.; Vederas, J.C.; James, M.N.: A mechanistic view of enzyme inhibition and peptide hydrolysis in the active site of the SARS-CoV 3C-like peptidase. J. Mol. Biol., 371, 1060-1074 (2007)CrossRefPubMedGoogle Scholar
  25. 25.
    Zheng, K.; Ma, G.; Zhou, J.; Min, Z.; Zhao, W.; Jiang, Y.; Yu, Q.; Feng, J.: Insight into the activity of SARS main protease: molecular dynamics study of dimeric and monomeric form of enzyme. Proteins Struct. Funct. Bioinform., 66, 467-479 (2007)CrossRefGoogle Scholar
  26. 26.
    Lin, P.Y.; Chou, C.Y.; Chang, H.C.; Hsu, W.C.; Chang, G.G.: Correlation between dissociation and catalysis of SARS-CoV main protease. Arch. Biochem. Biophys., 472, 34-42 (2008)CrossRefPubMedGoogle Scholar
  27. 27.
    Fan, K.; Wei, P.; Feng, Q.; Chen, S.; Huang, C.; Ma, L.; Lai, B.; Pei, J.; Liu, Y.; Chen, J.; Lai, L.J.: Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. Biol. Chem., 279, 1637-1642 (2004)CrossRefGoogle Scholar
  28. 28.
    Zhang, J.; Huitema, C.; Niu, C.; Yin, J.; James, M.N.; Eltis, L.D.; Vederas, J.C.: Aryl methylene ketones and fluorinated methylene ketones as reversible inhibitors for severe acute respiratory syndrome (SARS) 3C-like proteinase. Bioorg. Chem., 36, 229-240 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    Mukherjee, P.; Desai, P.; Ross, L.; White, E.L.; Avery, M.A.: Structure-based virtual screening against SARS-3CL(pro) to identify novel non-peptidic hits. Bioorg. Med. Chem., 16, 4138-4149 (2008)CrossRefPubMedGoogle Scholar
  30. 30.
    Shao, Y.M.; Yang, W.B.; Kuo, T.H.; Tsai, K.C.; Lin, C.H.; Yang, A.S.; Liang, P.H.; Wong, C.H.: Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease. Bioorg. Med. Chem., 16, 4652-4660 (2008)CrossRefPubMedGoogle Scholar
  31. 31.
    Akaji, K.; Konno, H.; Onozuka, M.; Makino, A.; Saito, H.; Nosaka, K.: Evaluation of peptide-aldehyde inhibitors using R188I mutant of SARS 3CL protease as a proteolysis-resistant mutant. Bioorg. Med. Chem., 16, 9400-9408 (2008)CrossRefPubMedGoogle Scholar
  32. 32.
    Ghosh, A.K.; Gong, G.; Grum-Tokars, V.; Mulhearn, D.C.; Baker, S.C.; Coughlin, M.; Prabhakar, B.S.; Sleeman, K.; Johnson, M.E.; Mesecar, A.D.: Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorg. Med. Chem. Lett., 18, 5684-5688 (2008)CrossRefPubMedGoogle Scholar
  33. 33.
    Phakthanakanok, K.; Ratanakhanokchai, K.; Kyu, K.L.; Sompornpisut, P.; Watts, A.; Pinitglang, S.: A computational analysis of SARS cysteine proteinase-octapeptide substrate interaction: implication for structure and active site binding mechanism. BMC Bioinformatics, 10 Suppl 1, S48 (2009)CrossRefGoogle Scholar
  34. 34.
    Bacha, U.; Barrila, J.; Gabelli, S.B.; Kiso, Y.; Mario Amzel, L.; Freire, E.: Development of broad-spectrum halomethyl ketone inhibitors against coronavirus main protease 3CL(pro). Chem. Biol. Drug Des., 72, 34-49 (2008)CrossRefPubMedGoogle Scholar
  35. 35.
    Yang, Q.; Chen, L.; He, X.; Gao, Z.; Shen, X.; Bai, D.: Design and synthesis of cinanserin analogs as severe acute respiratory syndrome coronavirus 3CL protease inhibitors. Chem. Pharm. Bull., 56, 1400-1405 (2008)CrossRefPubMedGoogle Scholar
  36. 36.
    Kuo, C.J.; Liu, H.G.; Lo, Y.K.; Seong, C.M.; Lee, K.I.; Jung, Y.S.; Liang, P.H.: Individual and common inhibitors of coronavirus and picornavirus main proteases. FEBS Lett., 583, 549-555 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    Chen, S.; Zhang, J.; Hu, T.; Chen, K.; Jiang, H.; Shen, X.: Residues on the dimer interface of SARS coronavirus 3C-like protease: dimer stability characterization and enzyme catalytic activity analysis. J. Biochem., 143, 525-536 (2008)CrossRefPubMedGoogle Scholar
  38. 38.
    Lee, C.C.; Kuo, C.J.; Ko, T.P.; Hsu, M.F.; Tsui, Y.C.; Chang, S.C.; Yang, S.; Chen, S.J.; Chen, H.C.; Hsu, M.C.; Shih, S.R.; Liang, P.H.; Wang, A.H.: Structural basis of inhibition specificities of 3C and 3C-like proteases by zinccoordinating and peptidomimetic Compounds. J. Biol. Chem., 284, 7646-7655 (2009)CrossRefPubMedGoogle Scholar
  39. 39.
    Taranto, A.G.; Carvalho, P.; Avery, M.A.: QM/QM studies for Michael reaction in coronavirus main protease (3CL Pro). J. Mol. Graph. Model., 27, 275-285 (2008)CrossRefPubMedGoogle Scholar
  40. 40.
    Zhong, N.; Zhang, S.; Zou, P.; Chen, J.; Kang, X.; Li, Z.; Liang, C.; Jin, C.; Xia, B.: Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain. J. Virol., 82, 4227-4234 (2008)CrossRefPubMedGoogle Scholar
  41. 41.
    Shi, J.; Sivaraman, J.; Song, J.: Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. J. Virol., 82, 4620-4629 (2008)CrossRefPubMedGoogle Scholar
  42. 42.
    Chu, L.H.; Choy, W.Y.; Tsai, S.N.; Rao, Z.; Ngai, S.M.: Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein Sci., 15, 699-709 (2006)CrossRefPubMedGoogle Scholar
  43. 43.
    Zhong, N.; Zhang, S.; Xue, F.; Kang, X.; Zou, P.; Chen, J.; Liang, C.; Rao, Z.; Jin, C.; Lou, Z.; Xia, B.: C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer. Protein Sci., 18, 839-844 (2009)PubMedGoogle Scholar
  44. 44.
    Regnier, T.; Sarma, D.; Hidaka, K.; Bacha, U.; Freire, E.; Hayashi, Y.; Kiso, Y.: New developments for the design, synthesis and biological evaluation of potent SARS-CoV 3CL(pro) inhibitors. Bioorg. Med. Chem. Lett., 19, 2722-2727 (2009)CrossRefPubMedGoogle Scholar
  45. 45.
    Ryu, Y.B.; Park, S.J.; Kim, Y.M.; Lee, J.Y.; Seo, W.D.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S.: SARS-CoV 3CLpro inhibitory effects of quinonemethide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett., 20, 1873-1876 (2010)CrossRefPubMedGoogle Scholar
  46. 46.
    Ramajayam, R.; Tan, K.P.; Liu, H.G.; Liang, P.H.: Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease. Bioorg. Med. Chem. Lett., 20, 3569-3572 (2010)CrossRefPubMedGoogle Scholar
  47. 47.
    Cheng, S.C.; Chang, G.G.; Chou, C.Y.: Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophys. J., 98, 1327-1336 (2010)CrossRefPubMedGoogle Scholar
  48. 48.
    Luo, W.; Su, X.; Gong, S.; Qin, Y.; Liu, W.; Li, J.; Yu, H.; Xu, Q.: Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Biosci. Trends, 3, 124-126 (2009)Google Scholar
  49. 49.
    Kuo, C.J.; Shih, Y.P.; Kan, D.; Liang, P.H.: Engineering a novel endopeptidase based on SARS 3CL(pro). Biotechniques, 47, 1029-1032 (2009)CrossRefPubMedGoogle Scholar
  50. 50.
    Li, C.; Qi, Y.; Teng, X.; Yang, Z.; Wei, P.; Zhang, C.; Tan, L.; Zhou, L.; Liu, Y.; Lai, L.: Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase. J. Biol. Chem., 285, 28134-28140 (2010)CrossRefPubMedGoogle Scholar
  51. 51.
    Hu, T.; Zhang, Y.; Li, L.; Wang, K.; Chen, S.; Chen, J.; Ding, J.; Jiang, H.; Shen, X.: Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure. Virology, 388, 324-334 (2009)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bioinformatics & Systems BiologyTechnical University BraunschweigBraunschweigGermany

Personalised recommendations