RNA helicase

  • Dietmar SchomburgEmail author
  • Ida Schomburg
Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume 10)


EC number

Systematic name

 ATP phosphohydrolase (RNA helix unwinding)

Recommended name

 RNA helicase


 1a NTPase/helicase <16> [5]

 ATP/dATP-dependent RNA helicase <1,42> [32]

 ATPase <10,12> [1,36]

 ATPase/RNA helicase <1,42> [32]

 ATPase/helicase <10> [36,41]

 BMV 1a protein <16> [5]

 BmL3-helicase <1,42> [32]

 Brr2p <6> [50]

 DBP2 <24> [30]

 DDX17 <33> [12]

 DDX19 <43> [56]

 DDX25 <23,34,35> [12,21]

 DDX3 <25> [8]

 DDX3X <25> (<25> the gene is localized to the X chromosome [12]) [12]

 DDX3Y <29> (<29> the gene is localized to the Y chromosome [12]) [12]

 DDX4 <30> [12]

 DDX5 <32> [12]

 DEAD box RNA helicase <1,2,3> [32,45,52]

 DEAD box helicase <2> [45]

 DEAD-box RNA helicase <4,5,7,38,47,48> [9,14,16,25,53,55]

 DEAD-box protein DED1 <38> [11]

 DEAD-box rRNA helicase <5> [26]

 DEAH-box RNA helicase <24> [30]

 DEAH-box protein 2 <24> [30]

 DED1 <38> [11,14]

 DENV NS3H <10> [41]

 DEXD/H-box RNA helicase <43> [56]

 DEx(H/D)RNA helicase <12> [23]

 DHX9 <44> [58]

 DbpA <5> [10,25,26]

 Dhx9/RNA helicase A <13> [61]

 EhDEAD1 <7> [16]

 EhDEAD1 RNA helicase <7> [16]

 FRH <9> [54]

 FRQ-interacting RNA helicase <9> [54]

 GRTH <3> [57]

 GRTH/DDX25 <3,35> [21,51]

 HCV NS3 helicase <12> [48]

 KOKV helicase <27> [7]

 Mtr4p <31> [22]

 NPH-II <8> [18,28]

 NS3 <10,12,17,20,39,41> (<12,39> ambiguous [27,42,44]) [1,2,4,27,35,36,39, 42,44,46]

 NS3 ATPase/helicase <10> [41]

 NS3 NTPase/helicase <17> (<17> ambiguous [46]) [46]

 NS3 helicase <10,12,17> [15,44,46]

 NS3 protein <10,12,17,18> (<12> ambiguous [39]) [15,39,40,41,62]

 NTPase/helicase <12> (<12> ambiguous [37]) [37,39]

 RHA <6> [31,49]

 RNA helicase <2> [45]

 RNA helicase A <6,44> [31,49,58]

 RNA helicase CrhR <14> [59]

 RNA helicase DDX3 <25> [8]

 RNA helicase Ddx39 <47> [53]

 RNA helicase Hera <4> [9]

 RNA-dependent ATPase <37> [34]

 RNA-dependent NTPase/helicase <12> [1]

 RTPase <10> [36]

 RhlB <5> [43]

 SpolvlgA <48> [55]

 Supv3L1 <46> [64]

 TGBp1 NTPase/helicase domain <22,28> [24]

 Tk-DeaD <15> [47]

 VRH1 <26> [33]

 YxiN <2> [45]

 eIF4A <36> [20]

 eIF4A helicase <36> [20]

 eIF4AIII <37> [34]

 eukaryotic initiation factor eIF 4A <36> [20]

 gonadotropin-regulated testicular RNA helicase <3> [51,57]

 helicase <10> [41]

 helicase B <5> [43]

 helicase/nucleoside triphosphatase <10> [4]

 non structural protein 3 <12> (<12> ambiguous [37,38]) [37,38]

 non-structural 3 <10> [36]

 non-structural protein 3 <17> [46]

 non-structural protein 3 protein <18> [40]

 nonstructural protein 3 <12,17,20,39,40,41> (<12,17,39,40> ambiguous [6,27, 39,42,44,46]) [1,2,6,27,35,39,42,44,46]

 nucleoside 5’-triphosphatase <10> [4]

 nucleoside triphosphatase/RNA helicase and 5’-RNA triphosphatase <20> [2]

 nucleoside triphosphatase/helicase <16> [5]

 p54 RNA helicase <45> [60]

 p68 RNA helicase <3,6> [52,63]

 protein NS3 <12> (<12> ambiguous [38]) [38]


West Nile Virus Dengue Virus Classical Swine Fever Virus Helicase Activity Phosphohydrolase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kyono, K.; Miyashiro, M.; Taguchi, I.: Characterization of ATPase activity of a hepatitis C virus NS3 helicase domain, and analysis involving mercuric rea gents. J. Biochem., 134, 505-511 (2003)PubMedCrossRefGoogle Scholar
  2. 2.
    Yon, C.; Teramoto, T.; Mueller, N.; Phelan, J.; Ganesh, V.K.; Murthy, K.H.; Padmanabhan, R.: Modulation of the nucleoside triphosphatase/RNA heli-case and 5’-RNA triphosphatase activities of Dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J. Biol. Chem., 280, 27412-27419 (2005)PubMedCrossRefGoogle Scholar
  3. 3.
    Ivanov, K.A.; Ziebuhr, J.: Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5-triphosphatase activities. J. Virol., 78, 7833-7838 (2004)PubMedCrossRefGoogle Scholar
  4. 4.
    Xu, T.; Sampath, A.; Chao, A.; Wen, D.; Nanao, M.; Chene, P.; Vasudevan Subhash, G.; Lescar, J.: Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J. Virol., 79, 10278-10288 (2005)PubMedCrossRefGoogle Scholar
  5. 5.
    Wang, X.; Lee, W.M.; Watanabe, T.; Schwartz, M.; Janda, M.; Ahlquist, P.: Brome mosaic virus 1a nucleoside triphosphatase/helicase domain plays crucial roles in recruiting RNA replication templates. J. Virol., 79, 13747-13758 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    Yamashita, T.; Unno, H.; Mori, Y.; Tani, H.; Moriishi, K.; Takamizawa, A.; Agoh, M.; Tsukihara, T.; Matsuura, Y.: Crystal structure of the catalytic do-main of Japanese encephalitis virus NS3 helicase/nucleoside triphosphatase at a resolution of 1.8 A. Virology, 373, 426-436 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    De Colibus, L.; Speroni, S.; Coutard, B.; Forrester, N.L.; Gould, E.; Canard, B.; Mattevi, A.: Purification and crystallization of Kokobera virus helicase.. Acta Crystallogr. Sect. F, 63, 193-195 (2007)CrossRefGoogle Scholar
  8. 8.
    Rodamilans, B.; Montoya, G.: Expression, purification, crystallization and preliminary X-ray diffraction analysis of the DDX3 RNA helicase domain. Acta Crystallogr. Sect. F, 63, 283-286 (2007)CrossRefGoogle Scholar
  9. 9.
    Rudolph, M.G.; Wittmann, J.G.; Klostermeier, D.: Crystallization and preliminary characterization of the Thermus thermophilus RNA helicase Hera C-terminal domain. Acta Crystallogr. Sect. F, 65, 248-252 (2009)CrossRefGoogle Scholar
  10. 10.
    Diges, C.M.; Uhlenbeck, O.C.: Escherichia coli DbpA is a 3’ -] 5’ RNA helicase. Biochemistry, 31; 44, 7903-7911 (2005)Google Scholar
  11. 11.
    Yang, Q.; Jankowsky, E.: ATP- and ADP-dependent modulation of RNA un-winding and strand annealing activities by the DEAD-box protein DED1. Biochemistry, 44, 13591-13601 (2005)PubMedCrossRefGoogle Scholar
  12. 12.
    Abdelhaleem, M.: RNA helicases: regulators of differentiation. Clin. Bio-chem., 38, 499-503 (2005)Google Scholar
  13. 13.
    Frick, D.N.: The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target. Curr. Issues Mol. Biol., 9, 1-20 (2007)PubMedGoogle Scholar
  14. 14.
    Cordin, O.; Tanner, N.K.; Doere, M.; Linder, P.; Banroques, J.: The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J., 23, 2478-2487 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    Luo, D.; Xu, T.; Watson, R.P.; Scherer-Becker, D.; Sampath, A.; Jahnke, W.; Yeong, S.S.; Wang, C.H.; Lim, S.P.; Strongin, A.; Vasudevan, S.G.; Lescar, J.: Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J., 27, 3209-3219 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    Lopez-Camarillo, C.; de la Luz Garc a-Hernandez, M.; Marchat, L.A.; Luna-Arias, J.P.; Hernandez de la Cruz, O.; Mendoza, L.; Orozco, E.: Entamoeba histolytica EhDEAD1 is a conserved DEAD-box RNA helicase with ATPase and ATP-dependent RNA unwinding activities. Gene, 15, 19-31 (2008)CrossRefGoogle Scholar
  17. 17.
    Lee, C.G.; Hurwitz, J.: A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3’ to 5’ direction.. J. Biol. Chem., 267, 4398-4407 (1992)PubMedGoogle Scholar
  18. 18.
    Shuman S.: Vaccinia virus RNA helicase. Directionality and substrate spe cificity. J. Biol. Chem., 268, 11798-11802 (1993)Google Scholar
  19. 19.
    Flores-Rozas, H.; Hurwitz, J.: Characterization of a new RNA helicase from nuclear extracts of HeLa cells which translocates in the 5’ to 3’ direction.. J. Biol. Chem., 268, 21372-21383 (1993)PubMedGoogle Scholar
  20. 20.
    Rogers, G.W.Jr.; Lima, W.F.; Merrick, W.C.: Further characterization of the helicase activity of eIF4A. Substrate specificity. J. Biol. Chem., 276, 12598-12608 (2001)CrossRefGoogle Scholar
  21. 21.
    Gutti, R.K.; Tsai-Morris, C.H.; Dufau, M.L.: Gonadotropin-regulated testicular helicase (DDX25), an essential regulator of spermatogenesis, prevents testicular germ cell apoptosis. J. Biol. Chem., 283, 17055-17064 (2008)PubMedCrossRefGoogle Scholar
  22. 22.
    Bernstein, J.; Patterson, D.N.; Wilson, G.M.; Toth, E.A.: Characterization of the essential activities of Saccharomyces cerevisiae Mtr4p, a 3’-]5’ helicase partner of the nuclear exosome. J. Biol. Chem., 283, 4930-4942 (2008)PubMedCrossRefGoogle Scholar
  23. 23.
    Serebrov, V.; Beran, R.K.; Pyle, A.M.: Establishing a mechanistic basis for the large kinetic steps of the NS3 helicase.. J. Biol. Chem., 284, 2512-2521 (2009)PubMedCrossRefGoogle Scholar
  24. 24.
    Leshchiner, A.D.; Solovyev, A.G.; Morozov, S.Y.; Kalinina, N.O.: A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. J. Gen. Virol., 87, 3087-3095 (2006)PubMedCrossRefGoogle Scholar
  25. 25.
    Talavera, M.A.; Matthews, E.E.; Eliason, W.K.; Sagi, I.; Wang, J.; Henn, A.; De La Cruz, E.M.: Hydrodynamic characterization of the DEAD-box RNA helicase DbpA. J. Mol. Biol., 355, 697-707 (2005)PubMedCrossRefGoogle Scholar
  26. 26.
    Henn, A.; Cao, W.; Hackney, D.D.; De La Cruz, E.M.: The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA. J. Mol. Biol., 377, 193-205 (2008)CrossRefGoogle Scholar
  27. 27.
    Belon, C.A.; Frick, D.N.: Fuel specificity of the hepatitis C virus NS3 helicase. J. Mol. Biol., 388, 851-864 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    Gross, C.H.; Shuman, S.: The nucleoside triphosphatase and helicase activities of vaccinia virus NPH-II are essential for virus replication. J. Virol., 72, 4729-4736 (1998)PubMedGoogle Scholar
  29. 29.
    Wu, J.; Bera, A.K.; Kuhn, R.J.; Smith, J.L.: Structure of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J. Virol., 79, 10268-10277 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    Imamura, O.; Saiki, K.; Tani, T.; Ohshima, Y.; Sugawara, M.; Furuichi. Y.: Cloning and characterization of a human DEAH-box RNA helicase, a functional homolog of fission yeast Cdc28/Prp8. Nucleic Acids Res., 26, 2063-2068 (1998)PubMedCrossRefGoogle Scholar
  31. 31.
    Välineva, T.; Yang, J.; Silvennoinen, O.: Characterization of RNA helicase A as component of STAT6-dependent enhanceosome. Nucleic Acids Res., 34, 3938-3946 (2006)PubMedCrossRefGoogle Scholar
  32. 32.
    Singh, M.; Srivastava, K.K.; Bhattacharya, S.M.: Molecular cloning and characterization of a novel immunoreactive ATPase/RNA helicase in human filarial parasite Brugia malayi. Parasitol. Res., 104, 753-761 (2009)PubMedCrossRefGoogle Scholar
  33. 33.
    Li, S.C.; Chung, M.C.; Chen, C.S.: Cloning and characterization of a DEAD box RNA helicase from the viable seedlings of aged mung bean. Plant Mol. Biol., 47, 761-770 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    Noble, C.G.; Song, H.: MLN51 stimulates the RNA-helicase activity of eI-F4AIII. PLoS One, 21, e303 (2007)CrossRefGoogle Scholar
  35. 35.
    Wen, G.; Xue, J.; Shen, Y.; Zhang, C.; Pan, Z.: Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase. Virus Res., 141, 63-70 (2009)PubMedCrossRefGoogle Scholar
  36. 36.
    Lescar, J.; Luo, D.; Xu, T.; Sampath, A.; Lim, S.P.; Canard, B.; Vasudevan, S.G.: Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res., 80, 94-101 (2008)PubMedCrossRefGoogle Scholar
  37. 37.
    Borowski, P.; Heising, M.V.; Miranda, I.B.; Liao, C.L.; Choe, J.; Baier, A.: Viral NS3 helicase activity is inhibited by peptides reproducing the Arg-rich conserved motif of the enzyme (motif VI). Biochem. Pharmacol., 76, 28-38 (2008)PubMedCrossRefGoogle Scholar
  38. 38.
    Mukovnya, A.V.; Tunitskaya, V.L.; Khandazhinskaya, A.L.; Golubeva, N.A.; Zakirova, N.F.; Ivanov, A.V.; Kukhanova, M.K.; Kochetkov, S.N.: Hepatitis C virus helicase/NTPase: an efficient expression system and new inhibitors. Biochemistry (Moscow), 73, 660-668 (2008)CrossRefGoogle Scholar
  39. 39.
    Hartjen, P.; Medom, B.K.; Reinholz, M.; Borowski, P.; Baier, A.: Regulation of the biochemical function of motif VI of HCV NTPase/helicase by the conserved Phe-loop. Biochimie, 91, 252-260 (2009)PubMedCrossRefGoogle Scholar
  40. 40.
    Schnettler, E.; de Vries, W.; Hemmes, H.; Haasnoot, J.; Kormelink, R.; Gold-bach, R.; Berkhout, B.: The NS3 protein of rice hoja blanca virus comple ments the RNAi suppressor function of HIV-1 Tat. EMBO Rep., 10, 258-263 (2009)PubMedCrossRefGoogle Scholar
  41. 41.
    Wang, C.C.; Huang, Z.S.; Chiang, P.L.; Chen, C.T.; Wu, H.N.: Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett., 583, 691-696 (2009)PubMedCrossRefGoogle Scholar
  42. 42.
    Beran, R.K.; Pyle, A.M.: Hepatitis C viral NS3-4A protease activity is enhanced by the NS3 helicase. J. Biol. Chem., 283, 29929-29937 (2008)PubMedCrossRefGoogle Scholar
  43. 43.
    Worrall, J.A.; Howe, F.S.; McKay, A.R.; Robinson, C.V.; Luisi, B.F.: Allosteric activation of the ATPase activity of the Escherichia coli RhlB RNA helicase. J. Biol. Chem., 283, 5567-5576 (2008)PubMedCrossRefGoogle Scholar
  44. 44.
    Beran, R.K.; Lindenbach, B.D.; Pyle, A.M.: The NS4A protein of hepatitis C virus promotes RNA-coupled ATP hydrolysis by the NS3 helicase. J. Virol., 83, 3268-3275 (2009)PubMedCrossRefGoogle Scholar
  45. 45.
    Theissen, B.; Karow, A.R.; Koehler, J.; Gubaev, A.; Klostermeier, D.: Cooperative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase. Proc. Natl. Acad. Sci. USA, 105, 548-553 (2008)PubMedCrossRefGoogle Scholar
  46. 46.
    Feito, M.J.; Gomez-Gutierrez, J.; Ayora, S.; Alonso, J.C.; Peterson, D.; Gavi-lanes, F.: Insights into the oligomerization state-helicase activity relationship of West Nile virus NS3 NTPase/helicase. Virus Res., 135, 166-174 (2008)PubMedCrossRefGoogle Scholar
  47. 47.
    Shimada, Y.; Fukuda, W.; Akada, Y.; Ishida, M.; Nakayama, J.; Imanaka, T.; Fujiwara, S.: Property of cold inducible DEAD-box RNA helicase in hyperthermophilic archaea. Biochem. Biophys. Res. Commun., 389, 622-627 (2009)PubMedCrossRefGoogle Scholar
  48. 48.
    Tani, H.; Fujita, O.; Furuta, A.; Matsuda, Y.; Miyata, R.; Akimitsu, N.; Tanaka, J.; Tsuneda, S.; Sekiguchi, Y.; Noda, N.: Real-time monitoring of RNA helicase activity using fluorescence resonance energy transfer in vitro. Bio-chem. Biophys. Res. Commun., 393, 131-136 (2010)CrossRefGoogle Scholar
  49. 49.
    Tang, W.; You, W.; Shi, F.; Qi, T.; Wang, L.; Djouder, Z.; Liu, W.; Zeng, X.: RNA helicase A acts as a bridging factor linking nuclear β-actin with RNA polymerase II. Biochem. J., 420, 421-428 (2009)PubMedCrossRefGoogle Scholar
  50. 50.
    Hahn, D.; Beggs, J.D.: Brr2p RNA helicase with a split personality: insights into structure and function. Biochem. Soc. Trans., 38, 1105-1109 (2010)PubMedCrossRefGoogle Scholar
  51. 51.
    Sato, H.; Tsai-Morris, C.H.; Dufau, M.L.: Relevance of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) in the structural integrity of the chromatoid body during spermatogenesis. Biochim. Biophys. Acta, 1803, 534-543 (2010)PubMedCrossRefGoogle Scholar
  52. 52.
    Wang, H.; Gao, X.; Huang, Y.; Yang, J.; Liu, Z.R.: P68 RNA helicase is a nucleocytoplasmic shuttling protein. Cell Res., 19, 1388-1400 (2009)PubMedCrossRefGoogle Scholar
  53. 53.
    Wilson, J.M.; Martinez-De Luna, R.I.; El Hodiri, H.M.; Smith, R.; King, M.W.; Mescher, A.L.; Neff, A.W.; Belecky-Adams, T.L.: RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis. Gene Expr. Patterns, 10, 44-52 (2010)PubMedCrossRefGoogle Scholar
  54. 54.
    Shi, M.; Collett, M.; Loros, J.J.; Dunlap, J.C.: FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock. Genetics, 184, 351-361 (2010)PubMedCrossRefGoogle Scholar
  55. 55.
    Solana, J.; Romero, R.: SpolvlgA is a DDX3/PL10-related DEAD-box RNA helicase expressed in blastomeres and embryonic cells in planarian embryonic development. Int. J. Biol. Sci., 5, 64-73 (2009)PubMedCrossRefGoogle Scholar
  56. 56.
    Collins, R.; Karlberg, T.; Lehtioe, L.; Schuetz, P.; van den Berg, S.; Dahlgren, L.G.; Hammarstroem, M.; Weigelt, J.; Schueler, H.: The DEXD/H-box RNA helicase DDX19 is regulated by an α-helical switch. J. Biol. Chem., 284, 10296-10300 (2009)PubMedCrossRefGoogle Scholar
  57. 57.
    Tsai-Morris, C.H.; Sheng, Y.; Gutti, R.; Li, J.; Pickel, J.; Dufau, M.L.: Gona-dotropin-regulated testicular RNA helicase (GRTH/DDX25) gene: cell-specific expression and transcriptional regulation by androgen in transgenic mouse testis. J. Cell. Biochem., 109, 1142-1147 (2010)PubMedGoogle Scholar
  58. 58.
    Schuetz, P.; Wahlberg, E.; Karlberg, T.; Hammarstroem, M.; Collins, R.; Flores, A.; Schueler, H.: Crystal structure of human RNA helicase A (DHX9): structural basis for unselective nucleotide base binding in a DEAD-box variant protein. J. Mol. Biol., 400, 768-782 (2010)CrossRefGoogle Scholar
  59. 59.
    Prakash, J.S.; Krishna, P.S.; Sirisha, K.; Kanesaki, Y.; Suzuki, I.; Shivaji, S.; Murata, N.: An RNA helicase, CrhR, regulates the low-temperature-inducible expression of heat-shock genes groES, groEL1 and groEL2 in Synechocystis sp. PCC 6803. Microbiology, 156, 442-451 (2010)PubMedCrossRefGoogle Scholar
  60. 60.
    Minshall, N.; Kress, M.; Weil, D.; Standart, N.: Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Mol. Biol. Cell, 20, 2464-2472 (2009)CrossRefGoogle Scholar
  61. 61.
    Bolinger, C.; Sharma, A.; Singh, D.; Yu, L.; Boris-Lawrie, K.: RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions. Nucleic Acids Res., 38, 1686-1696 (2010)PubMedCrossRefGoogle Scholar
  62. 62.
    Despins, S.; Issur, M.; Bougie, I.; Bisaillon, M.: Deciphering the molecular basis for nucleotide selection by the West Nile virus RNA helicase. Nucleic Acids Res., 38, 5493-5506 (2010)PubMedCrossRefGoogle Scholar
  63. 63.
    Carter, C.L.; Lin, C.; Liu, C.Y.; Yang, L.; Liu, Z.R.: Phosphorylated p68 RNA helicase activates Snail1 transcription by promoting HDAC1 dissociation from the Snail1 promoter. Oncogene, 29, 5427-5436 (2010)PubMedCrossRefGoogle Scholar
  64. 64.
    Paul, E.; Kielbasinski, M.; Sedivy, J.M.; Murga-Zamalloa, C.; Khanna, H.; Klysik, J.E.: Widespread expression of the Supv3L1 mitochondrial RNA helicase in the mouse. Transgenic Res., 19, 691-701 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bioinformatics & Systems BiologyTechnical University BraunschweigBraunschweigGermany

Personalised recommendations