A Real-Time System for Head Tracking and Pose Estimation

  • Zengyin Zhang
  • Minyoung Kim
  • Fernando de la Torre
  • Wende Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6553)


Driver’s visual attention provides important clues about his/ her activities and awareness. To monitor driver’s awareness, this paper proposes a real-time person-independent head tracking and pose estimation system using a monochromatic camera. The tracking and head-pose estimation tasks are formulated as regression problems. Three regression methods are proposed: (i) individual mapping on images for head tracking, (ii) direct mapping to subspace for head tracking, which predicts a subspace from one sample, and (iii) semantic piecewise regression for head-pose estimation. The approaches are evaluated on standard databases, and on several videos collected in vehicle environments.


Support Vector Regression Ridge Regression Active Appearance Model Face Tracking Head Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hartley, L., Horberry, T., Mabbott, N., Krueger, G.: Review of fatigue detection and prediction technologies. Tech. Rep., Institute for Research in Safty and Transport (2000)Google Scholar
  2. 2.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A 4, 519–524 (1987)CrossRefGoogle Scholar
  3. 3.
    Jolliffe, I.T.: Principal Component Analysis. In: Principal Component Analysis. Springer, New York (1986)CrossRefGoogle Scholar
  4. 4.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  5. 5.
    Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of objects using view-based representation. IJCV 26, 63–84 (1998)CrossRefGoogle Scholar
  6. 6.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Bischof, H., Wildenauer, H., Leonardis, A.: Illumination insensitive recognition using eigenspaces. Computer Vision and Image Understanding 1, 86–104 (2004)CrossRefGoogle Scholar
  8. 8.
    Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2007)CrossRefGoogle Scholar
  9. 9.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. PAMI 23, 681–685 (2001)CrossRefGoogle Scholar
  10. 10.
    Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60, 135–164 (2004)CrossRefGoogle Scholar
  11. 11.
    Wang, C., Li, Z.: A new face tracking algorithm based on local binary pattern and skin color information (2008)Google Scholar
  12. 12.
    Murphy-Chutorian, E., Trivedi, M.: Head pose estimation in computer vision: A survey. PAMI 31, 607–626 (2009)CrossRefGoogle Scholar
  13. 13.
    Ng, J., Gong, S.: Composite support vector machines for the detection of faces across views and pose estimation. Image and Vision Computing 20, 359–368 (2002)CrossRefGoogle Scholar
  14. 14.
    Kruger, N., Potzsch, M., von der Malsburg, C.: Determination of face position and pose with a learned representation based on labelled graphs. Image and Vision Computing 15, 665–673 (1997)CrossRefGoogle Scholar
  15. 15.
    Li, S., Fu, Q., Gu, L., Scholkopf, B., Cheng, Y., Zhang, H.: Kernel machine based learning for multi-view face detection and pose estimation. In: IEEE International Conference on Computer Vision, pp. 674–679 (2001)Google Scholar
  16. 16.
    Li, Y., Gong, S., Liddell, H.: Support vector regression and classification based multi-view face detection and recognition. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 300–305 (2000)Google Scholar
  17. 17.
    Raytchev, B., Yoda, I., Sakaue, K.: Head pose estimation by nonlinear manifold learning. In: IEEE International Conference on Pattern Recognition, pp. 462–466 (2004)Google Scholar
  18. 18.
    Zhu, Y., Fujimura, K.: Head pose estimation for driver monitoring. In: IEEE Intelligent Vehicle Symposium, pp. 501–506 (2004)Google Scholar
  19. 19.
    Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 2nd edn. Wiley, New York (1984)zbMATHGoogle Scholar
  20. 20.
    Drucker, H., Burges, C.J., Kaufman, L., Chris, C.J., Kaufman, B.L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems (1997)Google Scholar
  21. 21.
    Stoica, P., Viberg, M.: Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions. IEEE Trans. on Sig. Proc. 44, 3069–3078 (1996)CrossRefGoogle Scholar
  22. 22.
    Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)zbMATHGoogle Scholar
  23. 23.
    Isard, M., Blake, A.: Contour Tracking by Stochastic Propagation of Conditional Density. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 343–356. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  24. 24.
    Murphy-Chutorian, E., Doshi, A., Trivedi, M.M.: Head pose estimation for driver assistance systems: A robust algorithm and experimental evaluation. In: Proc. of IEEE Intelligent Transportation Systems Conference (September 2007)Google Scholar
  25. 25.
    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  26. 26.
    Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In: CIVR 2007: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 401–408. ACM (2007)Google Scholar
  27. 27.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. IEEE Trans. on PAMI 25, 1615–1618 (2003)CrossRefGoogle Scholar
  28. 28.
    Wang, L., Wang, X., Feng, J.: Intrapersonal subspace analysis with application to adaptive Bayesian face recognition. Pattern Recognition 38, 617–621 (2005)CrossRefGoogle Scholar
  29. 29.
    Little, G., Krishna, S., Black, J., Panchanathan, S.: A methodology for evaluating robustness of face recognition algorithms with respect to variations in pose and illumination angle. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 89–92 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zengyin Zhang
    • 1
  • Minyoung Kim
    • 1
  • Fernando de la Torre
    • 1
  • Wende Zhang
    • 2
  1. 1.Robotics InstituteCarnegie Mellon UniversityUSA
  2. 2.Electrical & Controls Integration LabGeneral Motors R&DUSA

Personalised recommendations