Automatic Registration of Oblique Aerial Images with Cadastral Maps

  • Martin Habbecke
  • Leif Kobbelt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6554)


In recent years, oblique aerial images of urban regions have become increasingly popular for 3D city modeling, texturing, and various cadastral applications. In contrast to images taken vertically to the ground, they provide information on building heights, appearance of facades, and terrain elevation. Despite their widespread availability for many cities, the processing pipeline for oblique images is not fully automatic yet. Especially the process of precisely registering oblique images with map vector data can be a tedious manual process. We address this problem with a registration approach for oblique aerial images that is fully automatic and robust against discrepancies between map and image data. As input, it merely requires a cadastral map and an arbitrary number of oblique images. Besides rough initial registrations usually available from GPS/INS measurements, no further information is required, in particular no information about the terrain elevation.


Aerial Image Building Height Initial Registration Automatic Registration Terrain Elevation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lemmens, M., Lemmen, C., Wubbe, M.: Pictometry: Potentials for land administration. In: Proc. of the 6th FIG reg. Conf., Int’l Fed. of Surveyers (2007)Google Scholar
  2. 2.
    Vanegas, C.A., Aliaga, D.G., Benes, B.: Building reconstruction using manhattan-world grammars. In: Proc. of CVPR (2010)Google Scholar
  3. 3.
    Google Building Maker: A 3d city modeling approach based on oblique aerial images (2010),
  4. 4.
    Gülch, E.: Extraction of 3d objects from aerial photographs. In: Proc. COST UCE ACTION C4 Workshop (1996)Google Scholar
  5. 5.
    Frueh, C., Sammon, R., Zakhor, A.: Automated texture mapping of 3d city models with oblique aerial imagery. In: Proc. of 3DPVT, pp. 396–403 (2004)Google Scholar
  6. 6.
    Ding, M., Lyngbaek, K., Zakhor, A.: Automatic registration of aerial imagery with untextured 3d lidar models. In: Proc. of CVPR (2008)Google Scholar
  7. 7.
    Wang, L., Neumann, U.: A robust approach for automatic registration of aerial images with untextured aerial lidar data. In: Proc. of CVPR (2009)Google Scholar
  8. 8.
    Gerke, M.: Dense matching in high resolution oblique airborne images. In: CMRT 2009, pp. 77–82 (2009)Google Scholar
  9. 9.
    Kopf, J., Neubert, B., Chen, B., Cohen, M., Cohen-Or, D., Deussen, O., Uyttendaele, M., Lischinski, D.: Deep photo: Model-based photograph enhancement and viewing. In: Proc. of SIGGRAPH Asia (2008)Google Scholar
  10. 10.
    Microsoft Corp.: Bing maps (2010),
  11. 11.
    Sheikh, Y., Khan, S., Shah, M., Cannata, R.: Geodetic alignment of aerial video frames. In: Video Registration. Video Computing Series (2003)Google Scholar
  12. 12.
    Wu, X., Carceroni, R., Fang, H., Zelinka, S., Kirmse, A.: Automatic alignment of large-scale aerial rasters to road-maps. In: Proc. of ACM GIS. (2007)Google Scholar
  13. 13.
    Mishra, P., Ofek, E., Kimchi, G.: Validation of vector data using oblique images. In: Proc. of ACM GIS (2008)Google Scholar
  14. 14.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fogel, D.N., Tinney, L.R.: Image registration using multiquadric functions, the finite element method, bivariate mapping polynomials and thin plate spline. Technical Report 96-1, National Center for Geographic Information and Analysis (1996)Google Scholar
  16. 16.
    Mena, J.B.: State of the art on automatic road extraction for gis update: a novel classification. Pattern Recogn. Lett. 24, 3037–3058 (2003)CrossRefGoogle Scholar
  17. 17.
    Gerke, M., Nyaruhuma, A.: Incorporating scene constraints into the triangulation of airborne oblique images. In: ISPRS, vol. XXXVIII 1-4-7/WS (2009)Google Scholar
  18. 18.
    Läbe, T., Förstner, W.: Automatic relative orientation of images. In: Proc. of the 5th Turkish-German Joint Geodetic Days (2006)Google Scholar
  19. 19.
    Cramer, M., Stallmann, D.: System calibration for direct georeferencing. In: IAPRS, vol. XXXIV, Com. III, Part A (2002) 79–84Google Scholar
  20. 20.
    Grenzdörffer, G.J., Guretzki, M., Friedlander, I.: Photogrammetric image acquisition and image analysis of oblique imagery. The Photogrammetric Record 23, 372–386 (2008)CrossRefGoogle Scholar
  21. 21.
    Stilla, U., Kolecki, J., Hoegner, L.: Texture mapping of 3d building models with oblique direct geo-referenced airborne IR image sequences. In: ISPRS Workshop: High-Resolution Earth Imaging for Geospatial Information (2009)Google Scholar
  22. 22.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 679–714 (1986)CrossRefGoogle Scholar
  23. 23.
    Liebowitz, D., Zisserman, A.: Metric rectification for perspective images of planes. In: Proc. of CVPR, pp. 482–488 (1998)Google Scholar
  24. 24.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2003)Google Scholar
  25. 25.
    Almansa, A., Desolneux, A., Vamech, S.: Vanishing point detection without any a priori information. IEEE PAMI 25, 502–507 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Habbecke
    • 1
  • Leif Kobbelt
    • 1
  1. 1.Computer Graphics GroupRWTH Aachen UniversityGermany

Personalised recommendations