QoS-Aware Cloud Service Composition Based on Economic Models

  • Zhen Ye
  • Athman Bouguettaya
  • Xiaofang Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)


Cloud service composition is usually long term based and economically driven. We consider cloud service composition from a user-based perspective. Specifically, the contributions are shown in three aspects. We propose to use discrete Bayesian Network to represent the economic model of end users. The cloud service composition problem is modeled as an Influence Diagram problem. A novel influence-diagram-based cloud service composition approach is proposed. Analytical and simulational results are presented to show the performance of the proposed composition approach.


Cloud Computing Service Composition Composite Service Cloud Service Provider Decision Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Motahari-Nezhad, H., Stephenson, B., Singhal, S.: Outsourcing business to cloud computing services: Opportunities and challenges. IEEE Internet Computing (2009)Google Scholar
  2. 2.
    Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud computing. In: Grid Computing Environments Workshop (2009)Google Scholar
  3. 3.
    Yu, Q., Liu, X., Bouguettaya, A., Medjahed, B.: Deploying and managing web services: issues, solutions, and directions. The VLDB Journal 17(3), 537–572 (2008)CrossRefGoogle Scholar
  4. 4.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view of cloud computing. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28 (2009)Google Scholar
  5. 5.
    Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic web. The VLDB Journal 12(4), 333–351 (2003)CrossRefGoogle Scholar
  6. 6.
    Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  7. 7.
    Dash, D., Kantere, V., Ailamaki, A.: An economic model for self-tuned cloud caching. In: IEEE 25th International Conference on Data Engineering, pp. 1687–1693 (2009)Google Scholar
  8. 8.
    Kantere, V., Dash, D., Francois, G., Kyriakopoulou, S., Ailamaki, A.: Optimal Service Pricing for a Cloud Cache. IEEE Transactions on Knowledge and Data Engineering (2011)Google Scholar
  9. 9.
    Shachter, R.: Probabilistic inference and influence diagrams. Operations Research, 589–604 (1988)Google Scholar
  10. 10.
    Gelmon, S., Agre-Kippenhan, S.: Promotion, tenure and the engaged scholar. AAHE Bulletin 54(5), 7–11 (2002)Google Scholar
  11. 11.
    Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet Computing, 51–59 (2004)Google Scholar
  12. 12.
    Wu, B., Chi, C., Chen, Z., Gu, M., Sun, J.: Workflow-based resource allocation to optimize overall performance of composite services. Future Generation Computer Systems 25(3), 199–212 (2009)CrossRefGoogle Scholar
  13. 13.
    Pinedo, M.: Scheduling: theory, algorithms, and systems. Springer (2012)Google Scholar
  14. 14.
    Baumol, W., Blinder, A.: Economics: principles and policy. South-Western Pub. (2011)Google Scholar
  15. 15.
    Jensen, F.: An introduction to Bayesian networks, vol. 74. UCL Press, London (1996)Google Scholar
  16. 16.
    Shachter, R.: Evaluating influence diagrams. Operations Research 34(6), 871–882 (1986)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Tatman, J., Shachter, R.: Dynamic programming and influence diagrams. IEEE Transactions on Systems, Man and Cybernetics 20(2), 365–379 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Elvira, a Java implementation of influence diagram (2005),
  19. 19.
    Chun, S.A., Atluri, V., Adam, N.R.: Using semantics for policy-based web service composition. Distributed and Parallel Databases 18(1), 37–64 (2005)CrossRefGoogle Scholar
  20. 20.
    Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web Services Composition Using SHOP2, p. 195 (2003)Google Scholar
  21. 21.
    Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixed-integer) linear programming system. Eindhoven U. of Technology (2004)Google Scholar
  22. 22.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware service composition based on genetic algorithms. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1069–1075 (2005)Google Scholar
  23. 23.
    Ye, Z., Zhou, X., Bouguettaya, A.: Genetic Algorithm Based QoS-Aware Service Compositions in Cloud Computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zhen Ye
    • 1
    • 2
  • Athman Bouguettaya
    • 3
  • Xiaofang Zhou
    • 1
  1. 1.The University of QueenslandAustralia
  2. 2.CSIRO ICT CentreAustralia
  3. 3.Royal Melbourne Institute of TechnologyAustralia

Personalised recommendations