Advertisement

A Service Oriented Architecture for Exploring High Performance Distributed Power Models

  • Yan Liu
  • Jared M. Chase
  • Ian Gorton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)

Abstract

Power grids are increasingly incorporating high quality, high throughput sensor devices inside power distribution networks. These devices are driving an unprecedented increase in the volume and rate of available information. The real-time requirements for handling this data are beyond the capacity of conventional power models running in central utilities. Hence, we are exploring distributed power models deployed at the regional scale. The connection of these models for a larger geographic region is supported by a distributed system architecture. This architecture is built in a service oriented style, whereby distributed power models running on high performance clusters are exposed as services. Each service is semantically annotated and therefore can be discovered through a service catalog and composed into workflows. The overall architecture has been implemented as an integrated workflow environment useful for power researchers to explore newly developed distributed power models.

Keywords

Service oriented architecture high performance computing power grid 

References

  1. 1.
    Cutsem, T.V., Howard, J.L., Ribben-Pavalla, M., El-Fattah, Y.M.: Hierachical State Estimation. International Journal of Electric Power and Energy Systems 2, 70–81 (1980)CrossRefGoogle Scholar
  2. 2.
    Cutsem, T.V., Howard, J.L., Ribben-Pavalla, M.: A Two-level Static State Estimator for Electric Power Systems. IEEE Trans. on PAS 100, 3722–3732 (1981)Google Scholar
  3. 3.
    Cutsem, T.V., Ribbens-Pavella, M.: Critical Survey of Hierarchical Methods for State Estimation of Electrical Power Systems. IEEE Trans. on Power Apparatus and Systems 102(10), 3415–3424 (1983)CrossRefGoogle Scholar
  4. 4.
    Habiballah, I.O., Irving, M.R.: Multipartitioning of Power System State Estimation Networks Using Simulated Annealing. Electric Power Systems Research 34, 117–120 (1995)CrossRefGoogle Scholar
  5. 5.
    Huang, Z., Guttromson, R.T., Nieplocha, J., Pratt, R.G.: Transforming Power Grid Operations. Scientific Computing 24(5), 22–27 (2007)Google Scholar
  6. 6.
    U.S.-Canada Power System Outage Task Force, Final Report on the August 14, 2003 Blackout in the United State and Canada: Causes and Recommendations (April 2004), https://reports.energy.gov/
  7. 7.
    Chen, Y., Huang, Z., Liu, Y., Rice, M., Jin, S.: Computational Challenges for Power System Operation. Accepted by Hawaii International Conference on System Sciences (2012)Google Scholar
  8. 8.
    Huang, Z., Chen, Y., Nieplocha, J.: Massive Contingency Analysis with High Performance Computing. In: Proceedings of the IEEE Power Engineering Society General Meeting 2009, Calgary, Canada, July 26-30 (2009)Google Scholar
  9. 9.
    Gorton, I., Huang, Z., Chen, Y., Kalahar, B., Jin, S., Chavarría-Miranda, D., Baxter, D., Feo, J.: A High-Performance Hybrid Computing Approach to Massive Contingency Analysis in the Power Grid. In: Proceedings of the 2009 Fifth IEEE International Conference on E-Science, E-SCIENCE, December 09-11, pp. 277–283. IEEE Computer Society, Washington, DC (2009), doi: http://dx.doi.org/10.1109/e-Science.2009.46
  10. 10.
    Chen, Y., Huang, Z., Chavarría-Miranda, D.: Performance Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis with Different Computing Environments. IEEE PES General Meeting. PNNL-SA-69878, Pacific Northwest National Laboratory, Richland, WA (2009)Google Scholar
  11. 11.
    Bose, A., Poon, K., Emami, R.: Implementation Issues for Hierarchical State Estimators. Final Project Report (September 2010)Google Scholar
  12. 12.
    Abur, A., Expósito, A.G.: Power System State Estimation Theory and Implementation. CRC Press (2004)Google Scholar
  13. 13.
    IEEE 118-bus teset case, http://www.ee.washington.edu/research/pstca/pf118/pg_tca118bus.html (accessed November 2011)
  14. 14.
    Pathak, J., Li, Y., Honavar, V., McCalley, J.: A Service-Oriented Architecture for Electric Power Transmission System Asset Management. In: Georgakopoulos, D., Ritter, N., Benatallah, B., Zirpins, C., Feuerlicht, G., Schoenherr, M., Motahari-Nezhad, H.R. (eds.) ICSOC 2006. LNCS, vol. 4652, pp. 26–37. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lalanda, P.: An E-Services Infrastructure for Power Distribution. IEEE Internet Computing 9(3), 52–59 (2005)CrossRefGoogle Scholar
  16. 16.
    Marin, C., Lalanda, P., Donsez, D.: A MDE Approach for Power Distribution Service Development. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 552–557. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Postina, M., Rohjans, S., Steffens, U., Uslar, M.: Views on Service Oriented Architectures in the Context of Smart Grids. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 25–30. IEEE Computer Society (2010)Google Scholar
  18. 18.
    Rohjans, S., Uslar, M., Juergen Appelrath, H.: OPC UA and CIM: Semantics for the smart grid. In: 2010 IEEE PES Transmission and Distribution Conference and Exposition, pp. 1–8 (2010)Google Scholar
  19. 19.
    Buyya, R., Murshed, M.: GridSim: a Toolkit for the Modeling and Simulation of Distributed Resouce Management and Scheduling for Grid Computing. Concurrency Computat. Pract. Exper. 14, 1175–1220 (2002)zbMATHCrossRefGoogle Scholar
  20. 20.
    Liu, Y., Jiang, W., Jin, S., Rice, M., Chen, Y.: Distributing Power Grid State Estimation on HPC Clusters A System Architecture Prototype. Accepted to the IEEE IPDPS Workshop on Parallel and Distributed Scientific and Engineering Computing, Shanghai, China (May 2012)Google Scholar
  21. 21.
    Jin, S., Chen, Y., Rice, M., Liu, Y., Gorton, I.: A Testbed for Deploying Distributed State Estimation in Power Grid. Accepted to IEEE Power & Energy Society General Meeting, Orlando, FL, USA (May 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Liu
    • 1
  • Jared M. Chase
    • 1
  • Ian Gorton
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations