Application of Business-Driven Decision Making to RESTful Business Processes

  • Qinghua Lu
  • Xiwei Xu
  • Vladimir Tosic
  • Liming Zhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)


Runtime adaptability is a desired quality attribute in business processes, particularly cross-organizational ones. Past work showed that designing and implementing business processes following the REpresentational State Transfer (REST) principles increases runtime adaptability. However, the past solutions for RESTful business processes (RESTfulBP) were limited to manual selection of process fragments to be composed at runtime. Therefore, we have now integrated into the RESTfulBP system an extended version of our MiniZnMASC middleware to enable concurrent selection of different RESTfulBP process fragments for different classes of user at runtime. This selection maximizes overall business value, while satisfying all given constraints. We also extended the RESTfulBP runtime engine with a process fragment processor, a constraint processor, a process fragment repository, and several types of monitoring resources. Experiments with prototype implementations showed that our solutions are feasible, functionally correct, business beneficial, with relatively low performance overhead, and with satisfactory scalability.


REST business-driven IT management middleware Web service composition management decision support middleware autonomic computing 


  1. 1.
    Xu, X., Zhu, L., Kannengiesser, U., Liu, Y.: An Architectural Style for Process-Intensive Web Information Systems. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 534–547. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Fielding, R.: Architectural Styles and the Design of Network-based Software Architectures. Universityof California, Irvine (2000)Google Scholar
  3. 3.
    Bartolini, C., Sahai, A., Sauve, J.P.: Proceedings of the Second IEEE/IFIP Workshop on Business-Driven IT Management. IEEE (2007)Google Scholar
  4. 4.
    Tosic, V.: Autonomic Business-Driven Dynamic Adaptation of Service-Oriented Systems and the WS-Policy4MASC Support for Such Adaptation. Intl. J. of Systems and Service-Oriented Eng. (IJSSOE) 1, 79–95 (2010)CrossRefGoogle Scholar
  5. 5.
    Lu, Q., Tosic, V.: Support for Concurrent Adaptation of Multiple Web Service Compositions to Maximize Business Metrics. In: Proc. of IM 2011, pp. 241–248. IEEE (2011)Google Scholar
  6. 6.
    Lu, Q., Tosic, V., Bannerman, P.L.: Support for the Business Motivation Model in the WS-Policy4MASC Language and MiniZnMASC Middleware. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 265–279. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    LIXI (Lending Industry XML Initiative). Web resource,
  8. 8.
    Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Yu, W.: Consistent and Decentralized Orchestration of BPEL Processes. In: Proc. of SAC 2009, pp. 1583–1584. ACM (2009)Google Scholar
  10. 10.
    Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)Google Scholar
  11. 11.
    Overdick, H.: Towards Resource-Oriented BPEL. In: Emerging Web Services Technology, vol. II, pp. 129–140. Springer (2008)Google Scholar
  12. 12.
    Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Webber, J., Parastatidis, S., Robinson, I.: How to GET a Cup of Coffee. Web resource,
  14. 14.
    zur Muehlen, M., Nickerson, J., Swenson, K.: Developing Web Services Choreography Standards–The case of REST vs. SOAP. Decision Support Systems 40, 9–29 (2005)CrossRefGoogle Scholar
  15. 15.
    Rest-client. Web resource,
  16. 16.
    Baker, M.: Hypermedia Workflow. Web resource,
  17. 17.
    Chafle, G., Dasgupta, K., Kumar, A., Mittal, S., Srivastava, B.: Adaptation in Web Service Composition and Execution. In: Proc. ICWS 2006, pp. 549–557. IEEE (2006)Google Scholar
  18. 18.
    Tong, H., Zhang, S.: A Fuzzy Multi-attribute Decision making Algorithm for Web Services Selection Based on QoS. In: Proce. of APSCC 2006, pp. 51–57. IEEE (2006)Google Scholar
  19. 19.
    Lu, Q., Tosic, V.: MiniMASC: A Framework for Diverse Autonomic Adaptations of Web Service Compositions. In: Proc. of UIC/ATC (Worksh. ANS) 2010, pp. 460–468. IEEE (2010)Google Scholar
  20. 20.
    Aib, I., Boutaba, R.: Business-Driven Optimization of Policy-Based Management Solutions. In: Proc. of IM 2007, pp. 254–263. IEEE (2007)Google Scholar
  21. 21.
    Microformat. Web resource,
  22. 22.
    BPMN Modeler. Web resource,
  23. 23.
    Tosic, V., Erradi, A., Maheshwari, P.: WS-Policy4MASC - A WS-Policy Extension Used in the Manageable and Adaptable Service Compositions (MASC) Middleware. In: Proc. of ICWS 2007, pp. 458–465. IEEE (2007)Google Scholar
  24. 24.
    Business Process Model and Notation (BPMN) 1.1. Web resource,
  25. 25.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qinghua Lu
    • 2
    • 1
  • Xiwei Xu
    • 1
    • 2
  • Vladimir Tosic
    • 1
    • 2
  • Liming Zhu
    • 1
    • 2
  1. 1.NICTA, Australian Technology ParkSydneyAustralia
  2. 2.University of New South WalesSydneyAustralia

Personalised recommendations