A Service Composition Framework Based on Goal-Oriented Requirements Engineering, Model Checking, and Qualitative Preference Analysis

  • Zachary J. Oster
  • Syed Adeel Ali
  • Ganesh Ram Santhanam
  • Samik Basu
  • Partha S. Roop
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7636)


To provide an effective service-oriented solution for a business problem by composing existing services, it is necessary to explore all available options for providing the required functionality while considering both the users’ preferences between various non-functional properties (NFPs) and any low-level constraints. Existing service composition frameworks often fall short of this ideal, as functional requirements, low-level behavioral constraints, and preferences between non-functional properties are often not considered in one unified framework. We propose a new service composition framework that addresses all three of these aspects by integrating existing techniques in requirements engineering, preference reasoning, and model checking. We prove that any composition produced by our framework provides the required high-level functionality, satisfies all low-level constraints, and is at least as preferred (w.r.t. NFPs) as any other possible composition that fulfills the same requirements. We also apply our framework to examples adapted from the existing service composition literature.


Model Check Functional Requirement Service Composition Composite Service Goal Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ali, S.A., Roop, P.S., Warren, I., Bhatti, Z.E.: Unified management of control flow and data mismatches in web service composition. In: Gao, J.Z., Lu, X., Younas, M., Zhu, H. (eds.) SOSE, pp. 93–101. IEEE (2011)Google Scholar
  2. 2.
    ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an automotive scenario in service-oriented computing. In: ICSE, pp. 613–622. ACM, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Bouveret, S., Endriss, U., Lang, J.: Conditional importance networks: A graphical language for representing ordinal, monotonic preferences over sets of goods. In: International Joint Conference on Artificial Intelligence, pp. 67–72 (2009)Google Scholar
  4. 4.
    Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description language version 2.0 part 1: Core language. W3C Recommendation, World Wide Web Consortium (June 2007),
  5. 5.
    Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software Engineering. Kluwer Academic (2000)Google Scholar
  6. 6.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (January 2000)Google Scholar
  8. 8.
    Erl, T.: SOA: Principles of Service Design. Prentice Hall (2008)Google Scholar
  9. 9.
    Haddad, J.E., Manouvrier, M., Rukoz, M.: TQoS: Transactional and QoS-aware selection algorithm for automatic web service composition. IEEE T. Services Computing 3(1), 73–85 (2010)CrossRefGoogle Scholar
  10. 10.
    Liu, X., Huang, G., Mei, H.: A user-oriented approach to automated service composition. In: ICWS, pp. 773–776. IEEE Computer Society (2008)Google Scholar
  11. 11.
    Marconi, A., Pistore, M.: Synthesis and Composition of Web Services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Miller, G.A.: WordNet: A lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  13. 13.
    Oster, Z.J., Santhanam, G.R., Basu, S.: Automating analysis of qualitative preferences in goal-oriented requirements engineering. In: Alexander, P., Pasareanu, C.S., Hosking, J.G. (eds.) ASE, pp. 448–451. IEEE (2011)Google Scholar
  14. 14.
    Oster, Z.J., Santhanam, G.R., Basu, S.: Identifying optimal composite services by decomposing the service composition problem. In: ICWS, pp. 267–274. IEEE Computer Society (2011)Google Scholar
  15. 15.
    Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems. SIGMOD Rec. 28, 5–12 (1999)CrossRefGoogle Scholar
  16. 16.
    Pessoa, R.M., da Silva, E.G., van Sinderen, M., Quartel, D.A.C., Pires, L.F.: Enterprise interoperability with SOA: a survey of service composition approaches. In: van Sinderen, M., Almeida, J.P.A., Pires, L.F., Steen, M. (eds.) EDOCW, pp. 238–251. IEEE Computer Society (2008)Google Scholar
  17. 17.
    Santhanam, G.R., Basu, S., Honavar, V.G.: TCPCompose  ⋆  – A TCP-Net Based Algorithm for Efficient Composition of Web Services Using Qualitative Preferences. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 453–467. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Yoo, J.W., Kumara, S.R.T., Lee, D., Oh, S.C.: A web service composition framework using integer programming with non-functional objectives and constraints. In: CEC/EEE, pp. 347–350. IEEE (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Zachary J. Oster
    • 1
  • Syed Adeel Ali
    • 2
  • Ganesh Ram Santhanam
    • 1
  • Samik Basu
    • 1
  • Partha S. Roop
    • 2
  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA
  2. 2.Department of Electrical and Computer EngineeringThe University of AucklandNew Zealand

Personalised recommendations