Basics of Molecular Biology

  • Yinghui Li
  • Dingsheng Zhao
Part of the Advanced Topics in Science and Technology in China book series (ATSTC)


Molecular biology is the study of biology on molecular level. The field overlaps with areas of biology and chemistry, particularly genetics and biochemistry. Molecular biology chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interactions between DNA (deoxyribonucleic acid), RNA (Ribonucleic acid) and protein biosynthesis as well as learning how these interactions are regulated[1].


Splice Site Nucleotide Excision Repair Internal Ribosome Entry Site Replication Fork Small Ribosomal Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [2]
    Beadle, G. W. & E. L. Tatum (1941). “Genetic control of biochemical reactions in neurospora”, Proceedings of the National Academy of Sciences 27: 499–506.CrossRefGoogle Scholar
  2. [3]
    Avery, O. T., C. M. Macleod & M. McCarty (1944). “Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by A desoxyribonucleic acid fraction isolated from pneumococcus type III”, Journal of Experimental Medicine 79(2): 137–158.PubMedCrossRefGoogle Scholar
  3. [4]
    Hershey, A. D. & M. Chase (1952). “Independent functions of viral protein and nucleic acid in growth of bacteriophage”, Journal of General Physiology 36(1): 39–56.PubMedCrossRefGoogle Scholar
  4. [5]
    Watson, J. D. & F. H. C. Crick (1953). “Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid”, Nature 171: 737–738.PubMedCrossRefGoogle Scholar
  5. [6]
    Jacob, F. & J. Monod (1961). “Genetic regulatory mechanisms in the synthesis of proteins”, Journal of Molecular Biology 3: 318–356.PubMedCrossRefGoogle Scholar
  6. [7]
    Gerstein, M. B., C. Bruce, J. S. Rozowsky, D. Zheng, J. Du, J. O. Korbel, O. Emanuelsson, Z. D. Zhang, S. Weissman & M. Snyder (2007). “What is a gene, post-ENCODE history and updated definition”, Genome Research 17(6): 669–681.PubMedCrossRefGoogle Scholar
  7. [8]
    Steinman, R. M. & C. L. Moberg (1994). “A triple tribute to the experiment that transformed biology”, Journal of Experimental Medicine 179(2): 379–384.PubMedCrossRefGoogle Scholar
  8. [9]
    Min Jou, W., G. Haegeman, M. Ysebaert & W. Fiers (1972). “Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein”, Nature 237(5350): 82–88.PubMedCrossRefGoogle Scholar
  9. [10]
    Pearson, H (2006). “Genetics: What is a gene?” Nature 441(7092): 398–401.PubMedCrossRefGoogle Scholar
  10. [11]
    Rassoulzadegan, M., V. Grandjean, P. Gounon, S. Vincent, I. Gillot & F. Cuzin (2006). “RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse”, Nature 441(7092): 469–474.PubMedCrossRefGoogle Scholar
  11. [12]
    Mortazavi, A., B. A. Williams, K. McCue, L. Schaeffer & B. Wold (2008). “Mapping and quantifying mammalian transcriptomes by RNA-Seq”, Nature Methods 5: 621.PubMedCrossRefGoogle Scholar
  12. [13]
    Braig, M. & C. Schmitt (2006). “Oncogene-induced senescence: Putting the brakes on tumor development”, Cancer Research 66(6): 2881–2884.PubMedCrossRefGoogle Scholar
  13. [14]
    International Human Genome Sequencing Consortium (2004). “Finishing the euchromatic sequence of the human genome”, Nature 431(7011): 931–945.CrossRefGoogle Scholar
  14. [15]
    Elizabeth, P (2007). “DNA study forces rethink of what it means to be a gene”, Science 316(5831): 1556–1557.CrossRefGoogle Scholar
  15. [16]
    Chien, A., D. B. Edgar & J. M. Trela (1976). “Deoxyribonucleic acid polymerase from the extreme thermophile thermus aquaticus”, Journal of Bacteriology 127(3): 1550–1557.PubMedGoogle Scholar
  16. [17]
    Bartlett, J. M. & D. Stirling (2003). “A short history of the polymerase chain reaction”, Methods in Molecular Biology 226: 3–6.PubMedGoogle Scholar
  17. [18]
    Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich & N. Arnheim (1985). “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia”, Science 230(4732): 1350–1354.PubMedCrossRefGoogle Scholar
  18. [19]
    Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis & H. A. Erlich (1988). “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase”, Science 239: 487–491.PubMedCrossRefGoogle Scholar
  19. [20]
    Pavlov, A. R., N. V. Pavlova, S. A. Kozyavkin & A. I. Slesarev (2006). “Thermostable DNA polymerases for a wide spectrum of applications: Comparison of a robust hybrid topoTaq to other enzymes. Kieleczawa J. DNA sequencing II: optimizing preparation and cleanup”, Jones and Bartlett: 241–257.Google Scholar
  20. [22]
    Thomas, P. S. (1980). “Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose”, Proceedings of the National Academy of Sciences 77(9): 5201–5205.CrossRefGoogle Scholar
  21. [23]
    Joseph S., et al. (2001). A Laboratory Manual. Cold Spring Harbor Laboratory Press.Google Scholar
  22. [24]
    Schade, B., G. Jansen, M. Whiteway, K. D. Entian & D. Y. Thomas (2004). “Cold adaptation in budding yeast”, Molecular Biology of the Cell 15(12): 5492–5502.PubMedCrossRefGoogle Scholar
  23. [25]
    Pérez-Ortín, J. E., J. García-Martínez & T. M. Alberola (2002). “DNA chips for yeast biotechnology. The case of wine yeasts”, Journal of Biotechnology 98(2–3): 227–241.PubMedCrossRefGoogle Scholar
  24. [27]
    Madigan, M. T. & J. M. Martino (2006). Brock Biology of Microorganisms. Pearson.Google Scholar
  25. [29]
    Pike, L. J. (2004). “Lipid rafts: heterogeneity on the high seas”, Biochemical Journal 378(Pt2): 281–292.PubMedCrossRefGoogle Scholar
  26. [30]
    Goldman, R. D., Y. Gruenbaum, R. D. Moir, D. K. Shumaker & T. P. Spann (2002). “Nuclear lamins: Building blocks of nuclear architecture”, Genes and Development 16(5): 533–547.PubMedCrossRefGoogle Scholar
  27. [31]
    Rout, M. P. & J. D. Aitchison (2001). “The nuclear pore complex as a transport machine”, Journal of Biological Chemistry 276(20): 16593–16596.PubMedCrossRefGoogle Scholar
  28. [32]
    Chazal, N. & D. Gerlier (2003). “Virus entry, assembly, budding, and membrane rafts”, Microbiology and Molecular Biology Reviews 67(2): 226–237.PubMedCrossRefGoogle Scholar
  29. [35]
    Gruber, T. M. & C. A. (2003). “Gross multiple sigma subunits and the partitioning of bacterial transcription space”, Annual Review of Microbiology 57: 441–466.PubMedCrossRefGoogle Scholar
  30. [36]
    Kapanidis, A. N., E. Margeat, T. A. Laurence, S. Doose, S. O. Ho, J. Mukhopadhyay, E. Kortkhonjia, V. Mekler, R. H. Ebright & S. Weiss (2005). “Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis”, Molecular Cell 20(3): 347–356.PubMedCrossRefGoogle Scholar
  31. [38]
    David, P. (1975). “Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter”, Proceedings of the National Academy of Sciences of the United States of America 72: 784–788.CrossRefGoogle Scholar
  32. [39]
    Heinz, S., G. Christopher & H. Karin (1975). “Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage fd”, Proceedings of the National Academy of Sciences of the United States of America 72: 737–741.CrossRefGoogle Scholar
  33. [41]
    López-Lastra, M., A. Rivas & M. I. Barría (2005). “Protein synthesis in eukaryotes: The growing biological relevance of cap-independent translation initiation”, Biological Research 38(2–3): 121–146.PubMedGoogle Scholar
  34. [44]
    Kisselev, L., M. Ehrenberg & L. Frolova (2003). “Termination of translation: interplay of mRNA, rRNAs and release factors?” EMBO Journal 22: 175–182.PubMedCrossRefGoogle Scholar
  35. [46]
    Park, M. H. (2006). “The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A)”, Journal of Biochemistry 139(2): 161–169.PubMedCrossRefGoogle Scholar
  36. [47]
    Jerard, H. (2005). “The discovery of RNA polymerase”, Journal of Biological Chemistry 280(52): 42477–42485.CrossRefGoogle Scholar
  37. [48]
    Ishihama, A. (2000). “Functional modulation of Escherichia coli RNA polymerase”, Annual Review of Microbiology 54: 499–518.PubMedCrossRefGoogle Scholar
  38. [50]
    Grummt, I. (1999). “Regulation of mammalian ribosomal gene transcription by RNA polymerase I”, Progress in Nucleic Acid Research & Molecular Biology 62: 109–154.CrossRefGoogle Scholar
  39. [51]
    Lee, Y., M. Kim, J. Han, K. H. Yeom, S. Lee, S. H. Baek & V. N. Kim (2004). “MicroRNA genes are transcribed by RNA polymerase II”, EMBO Journal 23(20): 4051–4060.PubMedCrossRefGoogle Scholar
  40. [52]
    Willis, I. M. (1993). “RNA polymerase III. Genes, factors and transcriptional specificity”, European Journal of Biochemistry 212(1): 1–11.PubMedCrossRefGoogle Scholar
  41. [53]
    Herr, A. J., M. B. Jensen, T. Dalmay & D. C. Baulcombe (2005). “RNA polymerase IV directs silencing of endogenous DNA”, Science 308(5718): 118–120.PubMedCrossRefGoogle Scholar
  42. [54]
    Makeyev, E. V. & D. H. Bamford (2002). “Cellular RNA-dependent RNA polymerase involved in posttranscriptional gene silencing has two distinct activity modes”, Molecular Cell 10(6): 1417–1427.PubMedCrossRefGoogle Scholar
  43. [55]
    Dame, R. T. (2005). “The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin”, Molecular Microbiology 56(4): 858–870.PubMedCrossRefGoogle Scholar
  44. [57]
    Bernstein, B. E., T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert, J. Cuff, B. Fry, A. Meissner, et al. (2006). “A bivalent chromatin structure marks key developmental genes in embryonic stem cells”, Cell 125(2): 315–326.PubMedCrossRefGoogle Scholar
  45. [58]
    Portoso, M. & G. Cavalli (2008). “The Role of RNAi and Noncoding RNAs in polycomb mediated control of gene expression and genomic programming”, in RNA and the Regulation of Gene Expression: A Hidden Layer of Complexity. Caister Academic Press.Google Scholar
  46. [59]
    Robinson, P. J., L. Fairall, V. A. Huynh & D. Rhodes (2006). “EM measurements define the dimensions of the ‘30-nm’ chromatin fiber: evidence for a compact, interdigitated structure”, Proceedings of the National Academy of Sciences 103(17): 6506–6511.CrossRefGoogle Scholar
  47. [60]
    Wong, H., J. M. Victor & J. Mozziconacci (2007). “An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length”, PLoS ONE 2(9): e877.PubMedCrossRefGoogle Scholar
  48. [62]
    Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore & E. J. Darnell (1999). Molecular Cell Biology. W. H. Freeman & Co.Google Scholar
  49. [63]
    Daniel, L. H. & W. J. Elizabeth (2005). Genetics: Analysis of Genes and Genomes. Jones & Bartlett Publishers.Google Scholar
  50. [65]
    Ng, B., F. Yang, D. P. Huston, Y. Yan, Y. Yang, Z. Xiong, L. E. Peterson, H. Wang & X. F. Yang (2004). “Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes”, Journal of Allergy and Clinical Immunology 114(6): 1463–1470.PubMedCrossRefGoogle Scholar
  51. [66]
    Patel, A. A. & J. A. Steitz (2003). “Splicing double: insights from the second spliceosome”, Nature Reviews Molecular Cell Biology. 4(12): 960–970.PubMedCrossRefGoogle Scholar
  52. [67]
    Friend, K., N. G. Kolev, M. D. Shu & J. A. Steitz (2008). “Minor-class splicing occurs in the nucleus of the Xenopus oocyte”, Ribonucleic Acid 14(8): 1459–1462.Google Scholar
  53. [68]
    Di, S. G., S. Gastaldi & G. P. Tocchini-Valentini (2008). “Cis-and trans-splicing of mRNAs mediated by tRNA sequences in eukaryotic cells”, Proceedings of the National Academy of Sciences of the United States of America 105(19): 6864–6869.CrossRefGoogle Scholar
  54. [69]
    Draper, B. W., P. A. Morcos & C. B. Kimmel (2001). “Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown”, Genesis 30(3): 154–156.PubMedCrossRefGoogle Scholar
  55. [70]
    Sazani, P., S. H. Kang, M. A. Maier, C. Wei, J. Dillman, J. Summerton, M. Manoharan & R. Kole (2001). “Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs”, Nucleic Acids Research 29(19): 3965–3974.PubMedGoogle Scholar
  56. [71]
    Morcos, P. A. (2007). “Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos”, Biochemical and Biophysical Research Communications 358(2): 521–527.PubMedCrossRefGoogle Scholar
  57. [72]
    Bruno, I. G., W. Jin & G. J. Cote (2004). “Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements”, Human Molecular Genetic 13(20): 2409–2420.CrossRefGoogle Scholar
  58. [73]
    Danckwardt, S., G. Neu-Yilik, R. Thermann, U. Frede, M. W. Hentze & A. E. Kulozik (2002). “Abnormally spliced beta-globin mRNAs: a single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay”, Blood 99(5): 1811–1816.PubMedCrossRefGoogle Scholar
  59. [74]
    Hanada, K. & J. C. Yang (2005). “Increased Novel biochemistry: post-translational protein splicing and other lessons from the school of antigen processing”, Journal of Molecular Medicine 83(6): 420–428.PubMedCrossRefGoogle Scholar
  60. [75]
    Berg, J. M., L. J. Tymoczko & L. Stryer (2007). Biochemistry (6th edition), W. H. Freeman & Co.Google Scholar
  61. [76]
    Hames, D. & Nigel H. (2006). Instant Notes Biochemistry (3rd edition). Taylor and Francis.Google Scholar
  62. [78]
    Lodish, H. F., A. Berk, C. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, H. Ploegh & P. T. Matsudaira (2007). “Post-transcriptional gene control”, in Molecular Cell Biology. W. H. Freeman.Google Scholar
  63. [79]
    Bruce, A., J. Alexander, L. Julian, R. Martin, R. Keith & W. Peter (2007). Molecular Biology of the Cell (5th edition). Garland Science.Google Scholar
  64. [80]
    Weaver, R. J. (2007). “Part V: Post-transcriptional events”, in Molecular Biology. McGraw Hill Higher Education.Google Scholar
  65. [81]
    Cheadle, C., J. Fan, Y. S. Cho-Chung, T. Werner, J. Ray, L. Do, M. Gorospe & K. G. Becker (2005). “Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability”, BMC Genomics 6(1): 75.PubMedCrossRefGoogle Scholar
  66. [82]
    Jackson, D. A., A. Pombo & F. Iborra (2000). “The balance sheet for transcription: an analysis of nuclear RNA metabolism in mammalian cells”, FASEB Journal 14(2): 242–254.PubMedGoogle Scholar
  67. [83]
    Schwanekamp, J. A., M. A. Sartor, S. Karyala, D. Halbleib, M. Medvedovic & C. R. Tomlinson (2006). “Genome-wide analyses show that nuclear and cytoplasmic RNA levels are differentially affected by dioxin”, Biochimica et Biophysica Acta 1759(8–9): 388–402.PubMedCrossRefGoogle Scholar
  68. [84]
    Scott, F. G.(2003). Developmental Biology. Sinauer.Google Scholar
  69. [85]
    Keene, J. D., J. M. Komisarow & M. B. Friedersdorf (2006). “RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts”, Nature Protocols 1(1): 302–307.PubMedCrossRefGoogle Scholar
  70. [86]
    Berg, J. M., J. L. Tymoczko, L. Stryer & N. D. Clarke (2002). “DNA replication, recombination, and repair”, in Biochemistry. W. H. Freeman and Company.Google Scholar
  71. [87]
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication, repair, and recombination”, in Molecular Biology of the Cell. Garland Science.Google Scholar
  72. [88]
    Berg, J. M., J. L. Tymoczko, L. Stryer & N. D. Clarke (2002). “DNA replication of both strands proceeds rapidly from specific start sites”, in Biochemistry. W. H. Freeman and Company.Google Scholar
  73. [89]
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Wlater (2002). Molecular Biology of the Cell (4th edition). Garland Science.Google Scholar
  74. [90]
    Berg, J. M., J. L. Tymoczko, L. Stryer & N. D. Clarke (2002). “DNA polymerases require a template and a primer”, in Biochemistry. W. H. Freeman and Company.Google Scholar
  75. [92]
    McCulloch, S. D. & T. A. Kunkel (2008). “The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases”, Cell Research 18: 148–161.PubMedCrossRefGoogle Scholar
  76. [93]
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication mechanisms”, in Molecular Biology of the Cell. Garland Science.Google Scholar
  77. [94]
    Weigel, C., A. Schmidt, B. Rückert, R. Lurz & W. Messer (1997). “DnaA protein binding to individual DnaA boxes in the Escherichia coli replication origin, oriC”, EMBO Journal 16(21): 6574–6583.PubMedCrossRefGoogle Scholar
  78. [95]
    Lodish, H., A. Berk, L. S. Zipursky, P. Matsudaira, D. Baltimore & J. Darnell (2000). “General features of chromosomal replication: Three common features of replication origins”, in Molecular Cell Biology. W. H. Freeman and Company.Google Scholar
  79. [97]
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication mechanisms: DNA topoisomerases prevent DNA tangling during replication”, in Molecular Biology of the Cell. Garland Science.Google Scholar
  80. [98]
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “DNA replication mechanisms: Special proteins help to open up the DNA double helix in front of the replication fork”, in Molecular Biology of the Cell. Garland Science.Google Scholar
  81. [99]
    Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts & P. Walter (2002). “Intracellular control of cell-cycle events: S-phase cyclin-Cdk complexes (S-Cdks) initiate DNA replication once per cycle”, in Molecular Biology of the Cell. Garland Science.Google Scholar
  82. [100]
    Tobiason, D. M. & H. S. Seifert (2006). “The obligate human pathogen, neisseria gonorrhoeae, is polyploid”, PLoS Biology 4(6): e185.PubMedCrossRefGoogle Scholar
  83. [101]
    Slater, S., S. Wold, M. Lu, E. Boye, K. Skarstad & N. Kleckner (1995). “E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration”, Cell 82(6): 927–936.PubMedCrossRefGoogle Scholar
  84. [102]
    Brown, T. A. (2002). “Termination of replication”, in Genomes. BIOS Scientific Publishers Ltd.Google Scholar
  85. [103]
    Griffiths, A. J. F., J. H. Miller, D. T. Suzuki, R. C. Lewontin & W. M. Gelbart (2000). “Replication of DNA: Rolling-circle replication”, in An Introduction to Genetic Analysis. W. H. Freeman.Google Scholar
  86. [104]
    Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis & H. A. Erlich (1988). “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase”, Science 239: 487–91.PubMedCrossRefGoogle Scholar
  87. [105]
    Garret, R. H. & C. M. Grisham (2000). Biochemistry. Saunders College Publishers.Google Scholar
  88. [106]
    Colowick, S. P. & O. N. Kapian (1980). “Recombinant DNA”, in Methods in Enzymology 68. Academic Press.Google Scholar
  89. [107]
    Jeremy, M. B., L. T. John & L. Stryer (2002). Biochemistry. W. H. Freeman.Google Scholar
  90. [108]
    Cohen, S. N., A. C. Chang, H. W. Boyer & R. B. Helling (1973). “Construction of biologically functional bacterial plasmids in vitro”, Proceedings of the National Academy of Sciences 70(11): 3240–3244.CrossRefGoogle Scholar
  91. [109]
    San Diego State University. 2007. “Plasmids in eukaryotic microbes: An example”, Webpage link: topics/plasmids/yeast-plasmid.html.Google Scholar
  92. [110]
    Nathan, P. K., P. C. Nathan & W. Ray (1980). “Recombinant DNA”, Volume 68: Recombinant Dna Part F (Methods in Enzymology). Academic Press.Google Scholar
  93. [111]
    Lodish, H., A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, S. L. Zipursky & J. Darnell (2004). Molecular Biology of the Cell. W. H. Freeman.Google Scholar
  94. [112]
    Browner, W. S., A. J. Kahn, E. Ziv, A. P. Reiner, J. Oshima, R. M. Cawthon, W. C. Hsueh & S. R. Cummings (2004). “The genetics of human longevity”, American Journal of Medicine 117(11): 851–860.PubMedCrossRefGoogle Scholar
  95. [113]
    Roulston, A., R. C. Marcellus & P. E. Branton (1999). “Viruses and apoptosis”, Annual Review of Microbiology 53: 577–628.PubMedCrossRefGoogle Scholar
  96. [114]
    Ohta, T., S. Tokishita, K. Mochizuki, J. Kawase, M. Sakahira & H. Yamagata (2006). “UV Sensitivity and Mutagenesis of the Extremely Thermophilic Eubacterium Thermus thermophilus HB27”, Genes and Environment 28(2): 56–61.CrossRefGoogle Scholar
  97. [115]
    Braig, M. & C. A. Schmitt (2006). “Oncogene-induced senescence: putting the brakes on tumor development”, Cancer Research 66: 2881–2884.PubMedCrossRefGoogle Scholar
  98. [116]
    Lynch, M. D. (2006). “How does cellular senescence prevent cancer?” DNA and Cell Biology 25(2): 69–78.PubMedCrossRefGoogle Scholar
  99. [117]
    Sancar, A. (2003). “Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors”, Chemical Reviews 103(6): 2203–2237.PubMedCrossRefGoogle Scholar
  100. [118]
    Watson, J. D., T. A. Baker, S. P. Bell, A. Gann, M. Levine & R. Losick (2004). Molecular Biology of the Gene. CSHL Press.Google Scholar
  101. [119]
    Volkert, M. R. (1988). “Adaptive response of Escherichia coli to alkylation damage”, Environmental and Molecular Mutagenesis 11(2): 241–255.PubMedCrossRefGoogle Scholar
  102. [120]
    Wilson, T. E., U. Grawunder & M. R. Lieber (1997). “Yeast DNA ligase IV mediates non-homologous DNA end joining”, Nature 388: 495–498.PubMedCrossRefGoogle Scholar
  103. [121]
    Moore, J. K. & J. E. Haber. (1996) “Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae”, Molecular Cell Biology 16(5): 2164–2173.Google Scholar
  104. [122]
    Boulton, S. J. & S. P. Jackson (1996). “Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways”, EMBO Journal 15(18): 5093–5103.PubMedGoogle Scholar
  105. [123]
    Wilson, T. E. & M. R. Lieber (1999). “Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway”, Journal of Biological Chemistry 274: 23599–23609.PubMedCrossRefGoogle Scholar
  106. [124]
    Budman, J. & G. Chu (2005). “Processing of DNA for nonhomologous end-joining by cell-free extract”, EMBO Journal 24(4): 849–860.PubMedCrossRefGoogle Scholar
  107. [125]
    Wang, H., A. R. Perrault, Y. Takeda, W. Qin, H. Wang & G. Iliakis (2003). “Biochemical evidence for Ku-independent backup pathways of NHEJ”, Nucleic Acids Research 31(18): 5377–5388.PubMedCrossRefGoogle Scholar
  108. [126]
    Jung, D. & F. W. Alt (2004). “Unraveling V(D)J recombination: Insights into gene regulation”, Cell 116(2): 299–311.PubMedCrossRefGoogle Scholar
  109. [127]
    Zahradka, K., D. Slade, A. Bailone, S. Sommer, D. Averbeck, M. Petranovic, A. B. Lindner & M. Radman (2006). “Reassembly of shattered chromosomes in Deinococcus radiodurans”, Nature 443(7111): 569–573.PubMedGoogle Scholar
  110. [128]
    Friedberg, E. C., G. C. Walker, W. Siede, R. D. Wood, R. A. Schultz & T. Ellenberger (2006). DNA Repair and Mutagenesis. ASM Press.Google Scholar
  111. [129]
    Bakkenist, C. J. & M. B. Kastan (2003). “DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation”, Nature 421(6922): 499–506.PubMedCrossRefGoogle Scholar
  112. [130]
    Wei, Q. Y., L. Li & D. Chen (2007). DNA Repair, Genetic Instability, and Cancer. World Scientific.Google Scholar
  113. [131]
    Schonthal, A. H. (2004). Checkpoint Controls and Cancer. Humana Press.Google Scholar
  114. [132]
    Janion, C. (2001). “Some aspects of the SOS response system-a critical survey”, Acta Biochimica Polonica 48(3): 599–610.PubMedGoogle Scholar
  115. [133]
    Schlacher, K., P. Pham, M. M. Cox & M. F. Goodman (2006). “Roles of 600 16 Basics of Molecular Biology DNA polymerase V and RecA protein in SOS damage-induced mutation”, Chemical Reviews 106(2): 406–419.PubMedCrossRefGoogle Scholar
  116. [134]
    Espejel, S., M. Martin, P. Klatt, J. Martin-Caballero, J. M. Flores & M. A. Blasco (2004). “Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-deficient mice”, EMBO Reports 5(5): 503–509.PubMedCrossRefGoogle Scholar
  117. [135]
    De Boer, J., J. O. Andressoo, J. de Wit, J. Huijmans, R. B. Beems, H. van Steeg, G. Weeda, G. T. van der Horst, W. van Leeuwen, A. P. Themmen, M. Meradji & J. H. Hoeijmakers (2002). “Premature aging in mice deficient in DNA repair and transcription”, Science 296(5571): 1276–1279.PubMedCrossRefGoogle Scholar
  118. [136]
    Dolle, M. E., R. A. Busuttil, A. M. Garcia, S. Wijnhoven, E. van Drunen, L. J. Niedernhofer, G. van der Horst, J. H. Hoeijmakers, H. van Steeg & J. Vijg (2006). “Increased genomic instability is not a prerequisite for shortened lifespan in DNA repair deficient mice”, Mutation Research 596(1–2): 22–35.PubMedCrossRefGoogle Scholar
  119. [137]
    Kobayashi, Y., I. Narumi, K. Satoh, T. Funayama, M. Kikuchi, S. Kitayama & H. Watanabe (2004). “Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans”, Biological Sciences in Space 18(3): 134–135.PubMedGoogle Scholar
  120. [138]
    Spindler, S. R. (2005). “Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction”, Mechanisms of Ageing and Development 126(9): 960–966.PubMedCrossRefGoogle Scholar
  121. [139]
    Tissenbaum, H. A. & L. Guarente (2001). “Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans”, Nature 410(6825): 227–230.PubMedCrossRefGoogle Scholar
  122. [140]
    Cohen, H. Y., C. Miller, K. J. Bitterman, N. R. Wall, B. Hekking, B. Kessler, K. T. Howitz, M. Gorospe, R. de Cabo & D. A. Sinclair (2004). “Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase”, Science 305(5682): 390–392.PubMedCrossRefGoogle Scholar
  123. [141]
    Cabelof, D. C., S. Yanamadala, J. J. Raffoul, Z. Guo, A. Soofi, A. R. Heydari (2003). “Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline”, DNA Repair (Amst.) 2(3): 295–307.CrossRefGoogle Scholar
  124. [142]
    Stuart, J. A., B. Karahalil, B. A. Hogue, N. C. Souza-Pinto & V. A. Bohr. (2004). “Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction”, FASEB Journal 18(3): 595–597.PubMedGoogle Scholar
  125. [143]
    Walker, D. W., G. McColl, N. L. Jenkins, J. Harris & G. J. Lithgow (2000). “Evolution of lifespan in C. elegans”, Nature 405(6784): 296–297.PubMedCrossRefGoogle Scholar
  126. [144]
    Cromie, G. A., J. C. Connelly & D. R. Leach (2001). “Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans”, Molecular Cell 8(6): 1163–1174.PubMedCrossRefGoogle Scholar
  127. [145]
    O’Brien, P. J. (2006). “Catalytic promiscuity and the divergent evolution of DNA repair enzymes”, Chemical Reviews 106(2): 720–752.CrossRefGoogle Scholar
  128. [146]
    Maresca, B. & J. H. Schwartz (2006). “Sudden origins: A general mechanism of evolution based on stress protein concentration and rapid environmental change”, Anat Rec B New Anat 289(1): 38–46.PubMedGoogle Scholar
  129. [147]
    Pamela, C. C., A. H. Richard & R. F. Denise (2005). Lippincott’s Illustrated Reviews: Biochemistry (3rd edition). Lippincott Williams & Wilkins.Google Scholar
  130. [148]
    David, L. N. & M. C. Michael (2005). Lehninger Principles of Biochemistry (4th edition). W. H. Freeman.Google Scholar
  131. [149]
    Ross, J. F. & M. Orlowski (1982). “Growth-rate-dependent adjustment of ribosome function in chemostat-grown cells of the fungus Mucor racemosus”, Journal of Bacteriology 149(2): 650–653.PubMedGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yinghui Li
    • 1
  • Dingsheng Zhao
    • 1
  1. 1.State Key Laboratory of Space Medicine Fundamentals and ApplicationAstronaut Research and Training Center of ChinaBeijingChina

Personalised recommendations