Conditional Random Fields for Land Use/Land Cover Classification and Complex Region Detection

  • Gulcan Can
  • Orhan Firat
  • Fatos Tunay Yarman Vural
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7626)

Abstract

Developing a complex region detection algorithm that is aware of its contextual relations with several classes necessitates statistical frameworks that can encode contextual relations rather than simple rule-based applications or heuristics. In this study, we present a conditional random field (CRF) model that is generated over the results of a robust local discriminative classifier in order to reveal contextual relations of complex objects and land use/land cover (LULC) classes. The proposed CRF model encodes the contextual relation between the LULC classes and complex regions (airfields) as well as updates labels of the discriminative classifier and labels the complex region in a unified framework. The significance of the developed model is that it does not need any explicit parameters and/or thresholds along with heuristics or expert rules.

Keywords

conditional random fields land use/land cover complex region de-tection satellite imagery 

References

  1. 1.
    Galleguillos, C., Belongie, S.: Context based object categorization: A critical survey. Computer Vision and Image Understanding 114, 712–722 (2010)CrossRefGoogle Scholar
  2. 2.
    Benedek, C., Sziranyi, T.: Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model. IEEE Transactions on Geoscience and Remote Sensing 47, 3416–3430 (2009)CrossRefGoogle Scholar
  3. 3.
    Zhong, P., Wang, R.: Learning conditional random fields for classification of hyperspectral images. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 19, 1890–1907 (2010)MathSciNetGoogle Scholar
  4. 4.
    Porway, J., Wang, Q., Zhu, S.C.: A Hierarchical and Contextual Model for Aerial Image Parsing. International Journal of Computer Vision 88, 254–283 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lin, L., Wu, T., Porway, J., Xu, Z.: A stochastic graph grammar for compositional object representation and recognition. Pattern Recognition 42, 1297–1307 (2009)MATHCrossRefGoogle Scholar
  6. 6.
    Zhu, S.C., Wu, Y.N., Mumford, D.: Minimax Entropy Principle and Its Application to Texture Modeling (1997)Google Scholar
  7. 7.
    Wu, T.-F., Xia, G.-S., Angeles, L.: Compositional Boosting for Computing Hierarchical Image Structures. LearningGoogle Scholar
  8. 8.
    Gould, S.: Probabilistic models for region-based scene understanding (2010)Google Scholar
  9. 9.
    Jiang, W., Chang, S.-F., Loui, A.C.: Context-Based Concept Fusion with Boosted Conditional Random Fields. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 1, pp. I-949–I-952 (2007)Google Scholar
  10. 10.
    Lee, C.-H., Greiner, R., Schmidt, M.: Support Vector Random Fields for Spatial Classification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 121–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)MATHGoogle Scholar
  12. 12.
    Firat, O., Tursun, O.T., Yarman Vural, F.T.: Application of Context Invariants in Airport Region of Interest Detection for Multi-spectral Satellite Imagery. In: IEEE 20th Conference on Signal Processing and Communications Applications, SIU (2012)Google Scholar
  13. 13.
    Comaniciu, D., Meer, P., Member, S.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  14. 14.
    Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 722–732 (2010)CrossRefGoogle Scholar
  15. 15.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 891–906 (1991)CrossRefGoogle Scholar
  16. 16.
    Mcfeeters, S.K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17, 1425–1432 (1996)CrossRefGoogle Scholar
  17. 17.
    Besag, J.: Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal of the Royal Statistical Society. Series B (Methodological) 36, 192–236 (1974)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gulcan Can
    • 1
  • Orhan Firat
    • 1
  • Fatos Tunay Yarman Vural
    • 1
  1. 1.Department of Computer ScienceMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations