Abstract

This paper describes a commute-time based 3D shape descriptor that is robust with respect to changes in pose and topology. A new and completely unsupervised mesh segmentation algorithm is proposed, which is based on the commute time embedding of the mesh and the k-means clustering using the embedded mesh vertices. We use the discrete Laplace-Beltrami operator to construct the graph Laplacian.

Keywords

3D Mesh Clustering Commute Time Embedding Shape Descriptor 

References

  1. 1.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 888–905 (2000)CrossRefGoogle Scholar
  2. 2.
    Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society (1997)Google Scholar
  3. 3.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15, 1373–1396 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1873–1890 (2007)CrossRefGoogle Scholar
  5. 5.
    Mateus, D., Horaud, R., Knossow, D., Cuzzolin, F., Boyer, E.: Articulated shape matching using laplacian eigenfunctions and unsupervised point registration. In: CVPR (2008)Google Scholar
  6. 6.
    Cuzzolin, F., Mateus, D., Knossow, D., Boyer, E., Horaud, R.: Coherent laplacian 3-D protrusion segmentation. In: CVPR (2008)Google Scholar
  7. 7.
    Lee, N.S., Yamasaki, T., Aizawa, K.: Hierarchical mesh decomposition and motion tracking for time-varying-meshes. In: ICME, pp. 1565–1568. IEEE (2008)Google Scholar
  8. 8.
    Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape representation. In: Symposium on Geometry Processing, pp. 225–233 (2007)Google Scholar
  9. 9.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proceedings of the Symposium on Geometry Processing, SGP 2009, pp. 1383–1392. Eurographics Association, Aire-la-Ville (2009)Google Scholar
  10. 10.
    Ovsjanikov, M., Mérigot, Q., Mémoli, F., Guibas, L.J.: One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 1555–1564 (2010)CrossRefGoogle Scholar
  11. 11.
    Castellani, U., Mirtuono, P., Murino, V., Bellani, M., Rambaldelli, G., Tansella, M., Brambilla, P.: A New Shape Diffusion Descriptor for Brain Classification. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 426–433. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3d models with shape distributions. In: Proceedings of the International Conference on Shape Modeling & Applications, SMI 2001, pp. 154–167. IEEE Computer Society, Washington, DC (2001)CrossRefGoogle Scholar
  13. 13.
    Jolliffe, I.: Principal Component Analysis, 2nd edn. American Mathematical Society. Springer-Verlag New York, Inc., New York (2002)MATHGoogle Scholar
  14. 14.
    Lafon, S., Lee, A.: Diffusion maps: a unified framework for dimension reduction, data partitioning and graph subsampling. IEEE Transactions on Pattern Analysis and Machine Intelligence (2005)Google Scholar
  15. 15.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)Google Scholar
  16. 16.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1999, pp. 317–324. ACM Press/Addison-Wesley Publishing Co., New York (1999)CrossRefGoogle Scholar
  17. 17.
    Xu, G.: Discrete laplace-beltrami operator on sphere and optimal spherical triangulations. Int. J. Comput. Geometry Appl. 16, 75–93 (2006)MATHCrossRefGoogle Scholar
  18. 18.
    Alexander, Bronstein, M.: Nonrigid world 3d database v 1.0 @ONLINE (2009)Google Scholar
  19. 19.
    Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bulletin of the Calcutta Mathematics 35, 99–110 (1943)MATHGoogle Scholar
  20. 20.
    Rustamov, R.M.: Robust volumetric shape descriptor. In: Eurographics Workshop on 3D Object Retrieval, pp. 1–5 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Muhammad Haseeb
    • 1
  • Edwin R. Hancock
    • 1
  1. 1.Department of Computer ScienceThe University of YorkUK

Personalised recommendations