Abstract

The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data.

Keywords

Complex Network Symmetry Quantum Walk 

References

  1. 1.
    Estrada, E.: The Structure of Complex Networks. Oxford University Press (2011)Google Scholar
  2. 2.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  3. 3.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences 98, 4569 (2001)CrossRefGoogle Scholar
  4. 4.
    Sporns, O.: Network analysis, complexity, and brain function. Complexity 8, 56–60 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    West, G., Brown, J., Enquist, B.: A general model for the structure, function, and allometry of plant vascular systems. Nature 400, 664–667 (1999)CrossRefGoogle Scholar
  6. 6.
    Newman, M.: Scientific collaboration networks. i. network construction and fundamental results. Physical Review E 64, 016131 (2001)CrossRefGoogle Scholar
  7. 7.
    Kalapala, V., Sanwalani, V., Moore, C.: The structure of the united states road network. University of New Mexico (2003) (preprint)Google Scholar
  8. 8.
    Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetMATHGoogle Scholar
  9. 9.
    MacArthur, B., Sánchez-García, R., Anderson, J.: Symmetry in complex networks. Discrete Applied Mathematics 156, 3525–3531 (2008)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Xiao, Y., Xiong, M., Wang, W., Wang, H.: Emergence of symmetry in complex networks. Phys. Rev. E 77, 066108 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mowshowitz, A.: Entropy and the complexity of graphs: I. an index of the relative complexity of a graph. Bulletin of Mathematical Biology 30, 175–204 (1968)MathSciNetMATHGoogle Scholar
  12. 12.
    Emms, D., Wilson, R., Hancock, E.: Graph Embedding Using Quantum Commute Times. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 371–382. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Emms, D., Severini, S., Wilson, R., Hancock, E.: Coined Quantum Walks Lift the Cospectrality of Graphs and Trees. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 332–345. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Kempe, J.: Quantum random walks: an introductory overview. Contemporary Physics 44, 307–327 (2003)CrossRefGoogle Scholar
  15. 15.
    Farhi, E., Gutmann, S.: Quantum computation and decision trees. Physical Review A 58, 915 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mahdian, M., Xu, Y.: Stochastic Kronecker Graphs. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 179–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Rossi
    • 1
  • Andrea Torsello
    • 1
  • Edwin R. Hancock
    • 2
  1. 1.Department of Environmental Science, Informatics and StatisticsCa’ Foscari University of VeniceItaly
  2. 2.Department of Computer ScienceUniversity of YorkUK

Personalised recommendations