Diagnose the Premalignant Pancreatic Cancer Using High Dimensional Linear Machine

  • Yifeng Li
  • Alioune Ngom
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7632)

Abstract

High throughput mass spectrometry technique has been extensively studied for the diagnosis of cancers. The detection of the pancreatic cancer at a very early stage is important to heal patients, but is very difficult due to biological and computational challenges. This paper proposes a simple classification approach which can be applied to the premalignant pancreatic cancer detection using mass spectrometry technique. Computational experiments show that our method outperforms the benchmark methods in accuracy and sensitivity without resorting to any biomarker selection, and the comparison with previous works shows that our method can obtain competitive performance.

Keywords

mass spectrometry pancreatic cancer classification high dimensional linear machine 

References

  1. 1.
    Ma, B.: Challenges in Computational Analysis of Mass Spectrometry Data for Proteomics. Journal of Computer Science and Technology 25(1), 107–123 (2010)CrossRefGoogle Scholar
  2. 2.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)MATHGoogle Scholar
  3. 3.
    Levner, I.: Feature Selection and Nearest Centroid Classification for Protein Mass Spectrometry. BMC Bioinformatics 6, e68 (2005)Google Scholar
  4. 4.
    Saeys, Y., Inza, I., Larrañaga, P.: A Review of Feature Selection Techniques in Bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRefGoogle Scholar
  5. 5.
    Shawe-Taylor, J., Cristianini, N.: Pattern Recognition and Machine Learning. Cambridge University Press, Cambridge (2004)Google Scholar
  6. 6.
    Pawa, N., Wright, J.M., Arulampalam, T.H.A.: Mass Spectrometry Based Proteomic Profiling for Pancreatic Cancer. JOP. J Pancreas. 11(5), 423–426 (2010)Google Scholar
  7. 7.
    Ge, G., Wong, G.W.: Classification of Premalignant Pancreatic Cancer Mass-Spectrometry Data Using Decision Tree Ensembles. BMC Bioinformatics 9, 275 (2008)CrossRefGoogle Scholar
  8. 8.
    Donoho, D.L.: High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality. Lecture in Math Challenges of the 21st Century, pp. 1–32 (2000)Google Scholar
  9. 9.
    Knies, R.: Yi Ma and the Blessing of Dimensionality. Microsoft Research Featured Story (May 28, 2010) http://research.microsoft.com/en-us/news/features/dimensionality-052810.aspx
  10. 10.
    Kroeker, K.L.: Face Recognition Breakthrough. Communications of the ACM 52(8), 18–19 (2010)CrossRefGoogle Scholar
  11. 11.
    Vapnik, V.: Statistical Learning Theory, pp. 339–371. Wiley, New York (1998)MATHGoogle Scholar
  12. 12.
    Chong, E.K.P., Żak, S.H.: An Introduction to Optimization, 3rd edn., pp. 211–246. Wiley, New York (2008)CrossRefMATHGoogle Scholar
  13. 13.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn., pp. 206–274. Johns Hopkins, Baltimore (1996)MATHGoogle Scholar
  14. 14.
    Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters 27, 861–874 (2006)CrossRefGoogle Scholar
  15. 15.
    Mundra, P.A., Rajapakse, J.C.: Gene and Sample Selection for Cancer Classification with Support Vectors Based t-statistic. Neurocomputing 73(13-15), 2353–2362 (2010)CrossRefGoogle Scholar
  16. 16.
    Rokach, L.: Ensemble-Based Classifiers. Artificial Intelligence Review 33(1-2), 1–39 (2010)CrossRefGoogle Scholar
  17. 17.
    Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning, pp. 453–472. MIT Press, Cambridge (2006)Google Scholar
  18. 18.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2010)CrossRefGoogle Scholar
  19. 19.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Hung, T.S., Yan, S.: Sparse Representation for Computer Vision and Pattern Recognition. Proceedings of The IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  20. 20.
    Li, Y., Ngom, A.: Classification Approach Based on Non-Negative Least Squares. Technical Report. No. 12-010, School of Computer Science, University of Windsor (2012)Google Scholar
  21. 21.
    Zhang, R., Huang, G.B., Sundararajan, N., Saratchandran, P.: Multicategory Classification Using an Extreme Learning Machine for Microarray Gene Expression Cancer Diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(3), 487–495 (2007)Google Scholar
  22. 22.
    Hingorani, S.R., et al.: Preinvasive and Invasive Ductal Pancreatic Cancer and Its Early Detection in The Mouse. Cancer Cell 4, 437–450 (2003)CrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yifeng Li
    • 1
  • Alioune Ngom
    • 1
  1. 1.School of Computer SciencesUniversity of WindsorWindsorCanada

Personalised recommendations