An Effective Method for Illumination-Invariant Representation of Color Images

  • Takahiko Horiuchi
  • Abdelhameed Ibrahim
  • Hideki Kadoi
  • Shoji Tominaga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7584)


This paper proposes a method for illumination-invariant representation of natural color images. The invariant representation is derived, not using spectral reflectance, but using only RGB camera outputs. We suppose that the materials of target objects are composed of dielectric or metal, and the surfaces include illumination effects such as highlight, gloss, or specularity. We preset the procedure for realizing the invariant representation in three steps: (1) detection of specular highlight, (2) illumination color estimation, and (3) invariant representation for reflectance color. The performance of the proposed method is examined in experiments using real-world objects including metals and dielectrics in detail. The limitation of the method is also discussed. Finally, the proposed representation is applied to the edge detection problem of natural color images.


Illumination-invariant color image highlight detection spectral reflectance estimation 


  1. 1.
    Burghouts, G.J., Geusebroek, J.-M.: Performance Evaluation of Local Colour Invariants. Computer Vision and Image Understanding 113, 48–62 (2009)CrossRefGoogle Scholar
  2. 2.
    Geusebroek, J.M., Boomgard, R.V., Smeulders, A.W.M., Geerts, H.: Color Invariance. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 1338–1350 (2001)CrossRefGoogle Scholar
  3. 3.
    van de Weijer, J., Gevers, T., Geusebroek, J.M.: Edge and Corner Detection by Photometric Quasi-Invariants. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 625–630 (2005)CrossRefGoogle Scholar
  4. 4.
    van de Weijer, J., Gevers, T., Smeulders, A.W.M.: Robust Photometric Invariant Features from the Color Tensor. IEEE Trans. Image Processing 15, 118–127 (2006)CrossRefGoogle Scholar
  5. 5.
    Stokman, H.M.G., Gevers, T.: Detection and Classification of Hyper-spectral Edge. In: Proc. 10th British Machine Vision Conference, pp. 643–651 (1999)Google Scholar
  6. 6.
    Montoliu, R., Pla, F., Klaren, A.K.: Multispectral invariants. Technical Report, DLSI, Universitat Jaume I (2004)Google Scholar
  7. 7.
    Shafer, S.A.: Using Color to Separate Reflection Components. Color Research and Applications 10, 210–218 (1985)CrossRefGoogle Scholar
  8. 8.
    Ibrahim, A., Tominaga, S., Horiuchi, T.: A spectral Invariant Representation of Spectral Reflectance. Optical Review 18, 231–236 (2011)CrossRefGoogle Scholar
  9. 9.
    Ibrahim, A., Tominaga, S., Horiuchi, T.: Invariant Representation for Spectral Reflectance Images and Its Application. EURASIP Journal on Image and Video Processing 2011 (2011)Google Scholar
  10. 10.
    Tominaga, S.: Dichromatic Reflection Models for a Variety of Materials. Color Research and Applications 19, 277–285 (1994)CrossRefGoogle Scholar
  11. 11.
    Imai, Y., Kato, Y., Kadoi, H., Horiuchi, T., Tominaga, S.: Estimation of Multiple Illuminants Based on Specular Highlight Detection. In: Schettini, R., Tominaga, S., Trémeau, A. (eds.) CCIW 2011. LNCS, vol. 6626, pp. 85–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takahiko Horiuchi
    • 1
  • Abdelhameed Ibrahim
    • 1
    • 2
  • Hideki Kadoi
    • 1
  • Shoji Tominaga
    • 1
  1. 1.Graduate School of Advanced Integration ScienceChiba UniversityInage-kuJapan
  2. 2.Faculty of EngineeringMansoura UniversityMansouraEgypt

Personalised recommendations