Advertisement

Classifier Ensemble Recommendation

  • Pyry Matikainen
  • Rahul Sukthankar
  • Martial Hebert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7583)

Abstract

The problem of training classifiers from limited data is one that particularly affects large-scale and social applications, and as a result, although carefully trained machine learning forms the backbone of many current techniques in research, it sees dramatically fewer applications for end-users. Recently we demonstrated a technique for selecting or recommending a single good classifier from a large library even with highly impoverished training data. We consider alternatives for extending our recommendation technique to sets of classifiers, including a modification to the AdaBoost algorithm that incorporates recommendation. Evaluating on an action recognition problem, we present two viable methods for extending model recommendation to sets.

Keywords

Action Recognition Weak Learner AdaBoost Algorithm Rating Store Model Recommendation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Matikainen, P., Sukthankar, R., Hebert, M.: Model recommendation for action recognition. In: CVPR (2012)Google Scholar
  2. 2.
    Malisiewicz, T., Shrivastava, A., Gupta, A., Efros, A.: Exemplar-svms for visual object detection, label transfer and image retrieval. In: ICML (2012)Google Scholar
  3. 3.
    Sadanand, S., Corso, J.: Action bank: A high-level representation of activity in video. In: CVPR (2012)Google Scholar
  4. 4.
    Obozinski, G., Taskar, B.: Multi-task feature selection. In: ICML Workshop on Structural Knowledge Transfer for Machine Learning (2006)Google Scholar
  5. 5.
    Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: NIPS (2007)Google Scholar
  6. 6.
    Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. JMLR 6, 615–637 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Rückert, U., Kramer, S.: Kernel-based inductive transfer. In: ECML (2008)Google Scholar
  8. 8.
    Kang, Z., Grauman, K., Sha, F.: Learning with whom to share in multi-task feature learning. In: ICML (2011)Google Scholar
  9. 9.
    Chapelle, O., Shivaswamy, P., Vadrevu, S., Weinberger, K., Zhang, Y., Tseng, B.: Multi-task learning for boosting with application to web search ranking. In: ACM SIGKDD (2010)Google Scholar
  10. 10.
    Wang, X., Zhang, C., Zhang, Z.: Boosted multi-task learning for face verification with applications to web image and video search. In: CVPR (2009)Google Scholar
  11. 11.
    Faddoul, J., Chidlovskii, B., Torre, F., Gilleron, R.: Boosting multi-task weak learners with applications to textual and social data. In: Machine Learning and Applications (2010)Google Scholar
  12. 12.
    Shen, L., Bai, L.: Adaboost gabor feature selection for classification. In: Proceedings of the Image and Vision Computing Conference, New Zealand (2004)Google Scholar
  13. 13.
    Zhou, M., Wei, H.: Face verification using gabor wavelets and adaboost. In: ICPR (2006)Google Scholar
  14. 14.
    Zhou, X., Zhuang, X., Liu, M., Tang, H., Hasegawa-Johnson, M., Huang, T.: HMM-Based Acoustic Event Detection with AdaBoost Feature Selection. In: Stiefelhagen, R., Bowers, R., Fiscus, J.G. (eds.) RT 2007 and CLEAR 2007. LNCS, vol. 4625, pp. 345–353. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Morra, J., Zhuowen, T., Apostolova, L., Green, A., Toga, A., Thompson, P.: Comparison of adaboost and support vector machines for detecting alzheimer’s disease through automated hippocampal segmentation. IEEE Transactions on Medical Imaging 29, 30–43 (2010)CrossRefGoogle Scholar
  16. 16.
    Rudin, C., Daubechies, I., The, R.S.: dynamics of adaboost: Cyclic behavior and convergence of margins. JMLR 5 (2004)Google Scholar
  17. 17.
    University of Central Florida: UCF50 action recognition dataset (2011), http://server.cs.ucf.edu/~vision/data.html#UCF50
  18. 18.
    Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV (2003)Google Scholar
  19. 19.
    Kläser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: British Machine Vision Conference, pp. 995–1004 (2008)Google Scholar
  20. 20.
    Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In: CVPR (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pyry Matikainen
    • 1
  • Rahul Sukthankar
    • 2
    • 1
  • Martial Hebert
    • 1
  1. 1.The Robotics InstituteCarnegie Mellon UniversityUSA
  2. 2.Google ResearchUSA

Personalised recommendations