A Three-Layered Approach to Facade Parsing
Abstract
We propose a novel three-layered approach for semantic segmentation of building facades. In the first layer, starting from an oversegmentation of a facade, we employ the recently introduced machine learning technique Recursive Neural Networks (RNN) to obtain a probabilistic interpretation of each segment. In the second layer, initial labeling is augmented with the information coming from specialized facade component detectors. The information is merged using a Markov Random Field. In the third layer, we introduce weak architectural knowledge, which enforces the final reconstruction to be architecturally plausible and consistent. Rigorous tests performed on two existing datasets of building facades demonstrate that we significantly outperform the current-state of the art, even when using outputs from earlier layers of the pipeline. Also, we show how the final output of the third layer can be used to create a procedural reconstruction.
Keywords
Parse Tree Window Detector Shape Grammar Semantic Vector Building FacadeReferences
- 1.Teboul, O., Simon, L., Koutsourakis, P., Paragios, N.: Segmentation of building facades using procedural shape priors. In: CVPR (2010)Google Scholar
- 2.Socher, R., Lin, C.C., Ng, A.Y., Manning, C.D.: Parsing Natural Scenes and Natural Language with Recursive Neural Networks. In: ICML (2011)Google Scholar
- 3.Teboul, O.: Ecole centrale paris facades database (2010), http://www.mas.ecp.fr/vision/Personnel/teboul/data.php
- 4.Zhao, P., Fang, T., Xiao, J., Zhang, H., Zhao, Q., Quan, L.: Rectilinear parsing of architecture in urban environment. In: CVPR (2010)Google Scholar
- 5.Wendel, A., Donoser, M., Bischof, H.: Unsupervised Facade Segmentation Using Repetitive Patterns. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) DAGM 2010. LNCS, vol. 6376, pp. 51–60. Springer, Heidelberg (2010)Google Scholar
- 6.Recky, M., Wendel, A., Leberl, F.: Façade segmentation in a multi-view scenario. In: 3DIMPVT (2011)Google Scholar
- 7.Mathias, M., Martinovic, A., Weissenberg, J., Haegler, S., Gool, L.V.: Automatic architectural style recognition. In: 3D-ARCH (2011)Google Scholar
- 8.Korč, F., Förstner, W.: eTRIMS Image Database for interpreting images of man-made scenes. Technical Report TR-IGG-P-2009-01 (April 2009)Google Scholar
- 9.Xiao, J., Fang, T., Tan, P., Zhao, P., Ofek, E., Quan, L.: Image-based façade modeling. In: SIGGRAPH Asia (2008)Google Scholar
- 10.Xiao, J., Fang, T., Zhao, P., Lhuillier, M., Quan, L.: Image-based street-side city modeling. SIGGRAPH 28(5) (2009)Google Scholar
- 11.Korah, T., Rasmussen, C.: Analysis of Building Textures for Reconstructing Partially Occluded Facades. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 359–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 12.Mayer, H., Reznik, S.: Mcmc linked with implicit shape models and plane sweeping for 3d building facade interpretation in image sequences. ISPRS (2006)Google Scholar
- 13.Dick, A.R., Torr, P.H.S., Cipolla, R.: Modelling and interpretation of architecture from several images. IJCV 60 (2004)Google Scholar
- 14.Muller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling of facades. SIGGRAPH 26(3) (2007)Google Scholar
- 15.Gool, L.J.V., Zeng, G., den Borre, F.V., Müller, P.: Towards mass-produced building models. In: PIA (2007)Google Scholar
- 16.Alegre, O., Dellaert, F.: A probabilistic approach to the semantic interpretation of building facades. In: Workshop on Vision Techniques Applied to the Rehabilitation of City Centres (2004)Google Scholar
- 17.Ripperda, N., Brenner, C.: Reconstruction of Façade Structures Using a Formal Grammar and RjMCMC. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 750–759. Springer, Heidelberg (2006)CrossRefGoogle Scholar
- 18.Han, F., Zhu, S.C.: Bottom-up/top-down image parsing with attribute grammar. IEEE TPAMI 31(1) (2009)Google Scholar
- 19.Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N.: Shape grammar parsing via reinforcement learning. In: CVPR (2011)Google Scholar
- 20.Aliaga, D.G., Rosen, P.A., Bekins, D.R.: Style grammars for interactive visualization of architecture. TVCG 13(4) (2007)Google Scholar
- 21.Bokeloh, M., Wand, M., Seidel, H.P.: A connection between partial symmetry and inverse procedural modeling. SIGGRAPH 29(4) (2010)Google Scholar
- 22.Yang, M.Y., Förstner, W.: Regionwise Classification of Building Facade Images. In: Stilla, U., Rottensteiner, F., Mayer, H., Jutzi, B., Butenuth, M. (eds.) PIA 2011. LNCS, vol. 6952, pp. 209–220. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 23.Liebowitz, D., Zisserman, A.: Metric rectification for perspective images of planes. In: CVPR (1998)Google Scholar
- 24.Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE TPAMI 24(5) (2002)Google Scholar
- 25.Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: ICCV (2009)Google Scholar
- 26.Gould, S., Russakovsky, O., Goodfellow, I., Baumstarck, P., Ng, A.Y., Koller, D.: The stair vision library, v2.2 (2009), http://ai.stanford.edu/~sgould/svl
- 27.Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: BMVC (2009)Google Scholar
- 28.Benenson, R., Mathias, M., Timofte, R., Van Gool, L.: Pedestrian detection at 100 frames per second. In: CVPR (2012)Google Scholar
- 29.Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE TPAMI 23(11) (2001)Google Scholar
- 30.Mathias, M., Martinovic, A., Weissenberg, J., Gool, L.V.: Procedural 3d building reconstruction using shape grammars and detectors. In: 3DIMPVT (2011)Google Scholar
- 31.Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: CVPR (2007)Google Scholar
- 32.Teboul, O.: Shape Grammar Parsing: Application to Image-based Modeling. PhD thesis, Ecole Centrale Paris (2011)Google Scholar
- 33.Procedural: CityEngine (2010), http://www.procedural.com/