SEEDS: Superpixels Extracted via Energy-Driven Sampling

  • Michael Van den Bergh
  • Xavier Boix
  • Gemma Roig
  • Benjamin de Capitani
  • Luc Van Gool
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7578)


Superpixel algorithms aim to over-segment the image by grouping pixels that belong to the same object. Many state-of-the-art superpixel algorithms rely on minimizing objective functions to enforce color homogeneity. The optimization is accomplished by sophisticated methods that progressively build the superpixels, typically by adding cuts or growing superpixels. As a result, they are computationally too expensive for real-time applications. We introduce a new approach based on a simple hill-climbing optimization. Starting from an initial superpixel partitioning, it continuously refines the superpixels by modifying the boundaries. We define a robust and fast to evaluate energy function, based on enforcing color similarity between the boundaries and the superpixel color histogram. In a series of experiments, we show that we achieve an excellent compromise between accuracy and efficiency. We are able to achieve a performance comparable to the state-of-the-art, but in real-time on a single Intel i7 CPU at 2.8GHz.


superpixels segmentation 


  1. 1.
    Wang, S., Lu, H., Yang, F., Yang, M.H.: Superpixel tracking. In: ICCV (2011)Google Scholar
  2. 2.
    Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: ICCV (2009)Google Scholar
  3. 3.
    Boix, X., Gonfaus, J.M., van de Weijer, J., Bagdanov, A., Serrat, J., Gonzàlez, J.: Harmony potentials. IJCV (2011)Google Scholar
  4. 4.
    Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR (2008)Google Scholar
  5. 5.
    Zhang, Y., Hartley, R., Mashford, J., Burn, S.: Superpixels via pseudo-boolean optimization. In: ICCV (2011)Google Scholar
  6. 6.
    Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: CVPR (2011)Google Scholar
  7. 7.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)Google Scholar
  8. 8.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI (2000)Google Scholar
  9. 9.
    Mori, G.: Guiding model search using segmentation. In: ICCV (2005)Google Scholar
  10. 10.
    Moore, A., Prince, S., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices. In: CVPR (2008)Google Scholar
  11. 11.
    Moore, A., Prince, S., Warrell, J.: Lattice cut. In: CVPR (2010)Google Scholar
  12. 12.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. PAMI (2012)Google Scholar
  13. 13.
    Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and Supervoxels in an Energy Optimization Framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV (2004)Google Scholar
  15. 15.
    Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. PAMI (2009)Google Scholar
  16. 16.
    Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. PAMI (1991)Google Scholar
  17. 17.
    Zeng, G., Wang, P., Wang, J., Gan, R., Zha, H.: Structure-sensitive superpixels via geodesic distance. In: ICCV (2011)Google Scholar
  18. 18.
    Zitnick, C., Jojic, N., Kang, S.: Consistent segmentation for optical flow estimation. In: ICCV (2005)Google Scholar
  19. 19.
    Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Sharp, H.: Cardinality of finite topologies. J. Combinatorial Theory (1968)Google Scholar
  21. 21.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Van den Bergh
    • 1
  • Xavier Boix
    • 1
  • Gemma Roig
    • 1
  • Benjamin de Capitani
    • 1
  • Luc Van Gool
    • 1
    • 2
  1. 1.Computer Vision LabETH ZurichSwitzerland
  2. 2.KU LeuvenBelgium

Personalised recommendations