Online Moving Camera Background Subtraction
Abstract
Recently several methods for background subtraction from moving camera were proposed. They use bottom up cues to segment video frames into foreground and background regions. Due to this lack of explicit models, they can easily fail to detect a foreground object when such cues are ambiguous in certain parts of the video. This becomes even more challenging when videos need to be processed online. We present a method which enables learning of pixel based models for foreground and background regions and, in addition, segments each frame in an online framework. The method uses long term trajectories along with a Bayesian filtering framework to estimate motion and appearance models. We compare our method to previous approaches and show results on challenging video sequences.
Keywords
Motion Vector Gaussian Mixture Model Background Subtraction Motion Model Appearance ModelReferences
- 1.Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data. Neural Computation 15, 1373–1396 (2003)zbMATHCrossRefGoogle Scholar
- 2.Boykov, Y., Funka-Lea, G.: Graph Cuts and Efficient N-D Image Segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
- 3.Brox, T., Malik, J.: Object Segmentation by Long Term Analysis of Point Trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 4.Costeira, J., Kanade, T.: A multi-body factorization method for motion analysis. In: ICCV, pp. 1071–1076 (1995)Google Scholar
- 5.Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)CrossRefGoogle Scholar
- 6.Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: CVPR, pp. 2790–2797 (June 2009)Google Scholar
- 7.Irani, M., Rousso, B., Peleg, S.: Computing occluding and transparent motions. International Journal of Computer Vision 12(1), 5–16 (1994)CrossRefGoogle Scholar
- 8.Kanatani, K.: Motion segmentation by subspace separation and model selection. In: ICCV, vol. 2, pp. 586–591 (2001)Google Scholar
- 9.Kwak, S., Lim, T., Nam, W., Han, B., Hee, J.: Generalized Background Subtraction Based on Hybrid Inference by Belief Propagation and Bayesian Filtering. In: ICCV (2011)Google Scholar
- 10.Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: CVPR, vol. 2, pp. 302–309. IEEE (2004)Google Scholar
- 11.Ochs, P., Brox, T.: Object Segmentation in Video: A Hierarchical Variational Approach for Turning Point Trajectories into Dense Regions. In: ICCV (2011)Google Scholar
- 12.Pawan Kumar, M., Torr, P.H.S., Zisserman, A.: Learning Layered Motion Segmentations of Video. IJCV 76(3), 301–319 (2007)CrossRefGoogle Scholar
- 13.Rao, S.R., Tron, R.: Motion Segmentation via Robust Subspace Separation in the Presence of Outlying, Incomplete, or Corrupted Trajectories. In: CVPR (2008)Google Scholar
- 14.Rowe, S., Blake, A.: Statistical mosaics for tracking. Image and Vision Computing 14(8), 549–564 (1996)CrossRefGoogle Scholar
- 15.Sheikh, Y., Javed, O., Kanade, T.: Background Subtraction for Freely moving cameras. In: ICCV (2009)Google Scholar
- 16.Shi, J.: Motion segmentation and tracking using normalized cuts. In: ICCV, vol. 32(10), pp. 1832–1845 (October 2002)Google Scholar
- 17.Stauffer, C.: Learning patterns of activity using real-time tracking. PAMI 22(8), 747–757 (2000)CrossRefGoogle Scholar
- 18.Sundaram, N., Brox, T., Keutzer, K.: Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 19.Tao, H., Sawhney, H.S., Kumar, R.: Object Tracking with Bayesian Estimation of Dynamic Layer Representations. PAMI 24(1), 75–89 (2002)CrossRefGoogle Scholar
- 20.Torr, P.H.S.: Outlier detection and motion segmentation. PhD thesis, University of Oxford (1995)Google Scholar
- 21.Tron, R., Vidal, R.: A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms. In: CVPR (2007)Google Scholar
- 22.Weiss, Y.: Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In: CVPR, pp. 520–526 (1997)Google Scholar
- 23.Weiss, Y., Freeman, W.T.: Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Neural Computation 13(10), 2173–2200 (2001)zbMATHCrossRefGoogle Scholar
- 24.Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: real-time tracking of the human body. PAMI 19(7), 780–785 (1997)CrossRefGoogle Scholar
- 25.Xiao, J.: Accurate Motion Layer Segmentation and Matting. In: CVPR, pp. 698–703 (2005)Google Scholar