Segmentation Based Particle Filtering for Real-Time 2D Object Tracking
Abstract
We address the problem of visual tracking of arbitrary objects that undergo significant scale and appearance changes. The classical tracking methods rely on the bounding box surrounding the target object. Regardless of the tracking approach, the use of bounding box quite often introduces background information. This information propagates in time and its accumulation quite often results in drift and tracking failure. This is particularly the case with the particle filtering approach that is often used for visual tracking. However, it always uses a bounding box around the object to compute features of the particle samples. Since this causes the drift, we propose to use segmentation for sampling. Relying on segmentation and computing the colour and gradient orientation histograms from these segmented particle samples allows the tracker to easily adapt to the object’s deformations, occlusions, orientation, scale and appearance changes. We propose two particle sampling strategies based on segmentation. In the first, segmentation is done for every propagated particle sample, while in the second only the strongest particle sample is segmented. Depending on this decision there is obviously a trade-off between speed and performance.
We perform an exhaustive quantitative evaluation on a number of challenging sequences and compare our method with the number of state-of-the-art methods previously evaluated on those sequences. The results we obtain outperform majority of the related work, both in terms of the performance and speed.
Keywords
Online Learning Visual Tracking Particle Sample Foreground Object Appearance ChangeReferences
- 1.Breitenstein, M., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. on PAMI (2011)Google Scholar
- 2.Ikizler, N., Forsyth, D.: Searching video for complex activities with finite state models. In: CVPR (2007)Google Scholar
- 3.Wagner, D., Langlotz, T., Schmalstieg, D.: Robust and unobtrusive marker tracking on mobile phones. In: ISMAR (2008)Google Scholar
- 4.Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-Based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 5.Lu, W., Okuma, K., Little, J.: Tracking and recognizing actions of multiple hockey players using the boosted particle filter. Image and Vision Computing (2009)Google Scholar
- 6.Avidan, S.: Ensemble tracking. In: CVPR (2005)Google Scholar
- 7.Godec, M., Roth, P., Bischof, H.: Hough-based tracking of non-rigid objects. In: ICCV (2011)Google Scholar
- 8.Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. IJCV (1998)Google Scholar
- 9.Nummiaro, K., Koller-Meier, E., Van Gool, L.: An adaptive color-based particle filter. Image and Vision Computing (2003)Google Scholar
- 10.Doucet, A., De Freitas, N., Gordon, N.: Sequential Monte Carlo methods in practice. Springer (2001)Google Scholar
- 11.Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A Boosted Particle Filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 12.Bibby, C., Reid, I.: Robust Real-Time Visual Tracking Using Pixel-Wise Posteriors. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 831–844. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 13.Chockalingam, P., Pradeep, N., Birchfield, S.: Adaptive fragments-based tracking of non-rigid objects using level sets. In: ICCV (2009)Google Scholar
- 14.Tsai, D., Flagg, M., Rehg, J.: Motion coherent tracking with multi-label mrf optimization. Algorithms (2010)Google Scholar
- 15.Shahed Nejhum, S., Ho, J., Yang, M.: Visual tracking with histograms and articulating blocks. In: CVPR (2008)Google Scholar
- 16.Javed, O., Ali, S., Shah, M.: Online detection and classification of moving objects using progressively improving detectors. In: CVPR (2005)Google Scholar
- 17.Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 18.Babenko, B., Yang, M., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)Google Scholar
- 19.Kalal, Z., Matas, J., Mikolajczyk, K.: Pn learning: Bootstrapping binary classifiers by structural constraints. In: CVPR (2010)Google Scholar
- 20.Lucas, B., Kanade, T.: With an application to stereo vision. In: Proceedings DARPA Image Understanding Workrhop (1998)Google Scholar
- 21.Kwon, J., Lee, K.: Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping monte carlo sampling. In: CVPR (2009)Google Scholar
- 22.Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: CVPR (2009)Google Scholar
- 23.Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)Google Scholar
- 24.Stoica, P., Moses, R.: Introduction to spectral analysis, vol. 51. Prentice Hall, Upper Saddle River (1997)zbMATHGoogle Scholar
- 25.Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, TOG (2004)Google Scholar
- 26.Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: ICCV (2009)Google Scholar
- 27.Leibe, B., Schindler, K., Van Gool, L.: Coupled detection and trajectory estimation for multi-object tracking. In: ICCV (2007)Google Scholar
- 28.Ollero, A., Lacroix, S., Merino, L., Gancet, J., Wiklund, J., Remuss, V., Perez, I., Gutierrez, L., Viegas, D., Benitez, M., et al.: Multiple eyes in the skies: architecture and perception issues in the comets unmanned air vehicles project. IEEE Robotics & Automation Magazine (2005)Google Scholar
- 29.Lockheed-Martin: Ucf lockheed-martin uav dataset (2009), http://vision.eecs.ucf.edu/aerial/index.html
- 30.Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV (2010)Google Scholar