Reading Ancient Coins: Automatically Identifying Denarii Using Obverse Legend Seeded Retrieval

  • Ognjen Arandjelović
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7575)


The aim of this paper is to automatically identify a Roman Imperial denarius from a single query photograph of its obverse and reverse. Such functionality has the potential to contribute greatly to various national schemes which encourage laymen to report their finds to local museums. Our work introduces a series of novelties: (i) this is the first paper which describes a method for extracting the legend of an ancient coin from a photograph; (ii) we are also the first to suggest the idea and propose a method for identifying a coin using a series of carefully engineered retrievals, each harnessed for further information using visual or meta-data processing; (iii) we show how in addition to a unique standard reference number for a query coin, the proposed system can be used to extract salient coin information (issuing authority, obverse and reverse descriptions, mint date) and retrieve images of other coins of the same type.


Recognition Text Image Reverse Motif Inscription 


  1. 1.
    Webb, P.H. (vol. I), Mattingly, H., Sydenham, A., Sutherland, C.H.V. (vol. II-III), Sutherland, C.H.V., Carson, R.A.G. (vol. VI-IX), Carson, R.A.G., Kent, J.P.C., Burnett, A.M. (vol. X) (eds.): Roman Imperial Coinage, vol. I–X. Spink, London (1923-1994)Google Scholar
  2. 2.
    The portable antiquities scheme, (last accessed July 2012)
  3. 3.
    Davidsson, P.: Coin classification using a novel technique for learning characteristic decision trees by controlling the degree of generalization. In: Proc. IEA/AIE, pp. 403–412 (1996)Google Scholar
  4. 4.
    Mitsukura, Y., Fukumi, M., Akamatsu, N.: Design and evaluation of neural networks for coin recognition by using GA and SA. In: Proc. IJCNN, vol. 5, pp. 178–183 (2000)Google Scholar
  5. 5.
    Huber, R., Ramoser, H., Mayer, K., Penz, H., Rubik, M.: Classification of coins using an eigenspace approach. Pattern Recognition Letters 26(1), 61–75 (2005)CrossRefGoogle Scholar
  6. 6.
    van der Maaten, L., Boon, P.: COIN-O-MATIC: A fast system for reliable coin classification. In: Proc. MUSCLE CIS Coin Recognition Competition Workshop, pp. 7–18 (2006)Google Scholar
  7. 7.
    Zaharieva, M., Kampel, M., Zambanini, S.: Image Based Recognition of Ancient Coins. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 547–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Kampel, M., Zaharieva, M.: Recognizing Ancient Coins Based on Local Features. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 11–22. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Arandjelović, O.: Automatic attribution of ancient Roman imperial coins. In: Proc. CVPR, pp. 1728–1734 (2010)Google Scholar
  10. 10.
    WildWinds graphical partial legend search engine, (last accessed July 2012)
  11. 11.
    Ancient coins search engine, (last accessed July 2012)
  12. 12.
    Dalai, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  13. 13.
    Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. Journal of the Royal Statistical Society 61(3), 611–622 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ognjen Arandjelović
    • 1
  1. 1.Swansea UniversityWalesUK

Personalised recommendations