Tracking Feature Points in Uncalibrated Images with Radial Distortion

  • Miguel Lourenço
  • João Pedro Barreto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7575)


The appearance of moving features in the field-of-view (FoV) of the camera may substantially change due to different camera poses. Typical solutions for tracking image points involve the assumption of an image motion model and the estimation of the motion parameters using image alignment techniques. While for conventional cameras this suffices, the radial distortion that arises in cameras with wide FoV lenses makes the standard motion models inaccurate. In this paper, we propose a set of motion models that implicitly encompass the distortion effect arising in this type of imaging devices. The proposed motion models are included in a standard image alignment framework for performing feature tracking in cameras presenting significant distortion. Consolidation experiments in repeatability and structure-from-motion scenarios show that the proposed RD-KLT trackers significantly improve the tracking performance in images presenting radial distortion, with minimal computational overhead when compared with a state-of-the-art KLT tracker.


Motion Model Feature Tracking Warping Function Image Alignment Radial Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: DARPA Image Understanding Workshop, pp. 121–130 (1981)Google Scholar
  2. 2.
    Shi, J., Tomasi, C.: Good features to track. In: IEEE-CVPR, pp. 593–600 (1994)Google Scholar
  3. 3.
    Yilmaz, A., Javed, O., Shah, M.: Object Tracking: A survey. ACM Comput. Surv. 38 (2006)Google Scholar
  4. 4.
    Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., Koch, R.: Visual Modeling with a Hand-Held Camera. IJCV 59, 207–232 (2004)CrossRefGoogle Scholar
  5. 5.
    Baker, S., Matthews, I.: Equivalence and Efficiency of Image Alignment Algorithms. In: IEEE-CVPR, vol. 1, pp. 1090–1097 (2001)Google Scholar
  6. 6.
    Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework. IJCV 56, 221–255 (2004)CrossRefGoogle Scholar
  7. 7.
    Bouguet, J.Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the algorithm (2000)Google Scholar
  8. 8.
    Hwangbo, M., Kim, J.S., Kanade, T.: Gyro-aided feature tracking for a moving camera: fusion, auto-calibration and GPU implementation. IJRR 30, 1755–1774 (2011)Google Scholar
  9. 9.
    Gluckman, J., Nayar, S.: Egomotion and Omnidirectional Cameras. In: IEEE-ICCV (1998)Google Scholar
  10. 10.
    Baker, P., Fermuller, C., Aloimonos, Y., Pless, R.: A Spherical Eye from Multiple Cameras (Makes Better Models of the World). In: IEEE-CVPR (2001)Google Scholar
  11. 11.
    Caron, G., Eynard, D.: Multiple camera types simultaneous stereo calibration. In: IEEE-ICRA, pp. 2933–2938 (2011)Google Scholar
  12. 12.
    García Cifuentes, C., Sturzel, M., Jurie, F., Brostow, G.J.: Motion models that only work sometimes. In: BMVC (2012)Google Scholar
  13. 13.
    Koeser, K., Bartczak, B., Koch, R.: Robust GPU-assisted camera tracking using free-form surface models. Journal of Real-Time Image Processing 2, 133–147 (2007)CrossRefGoogle Scholar
  14. 14.
    Behrens, A., Bommes, M., Stehle, T., Gross, S., Leonhardt, S., Aach, T.: Real-time image composition of bladder mosaics in fluorescence endoscopy. Computer Science - Research and Development 26, 51–64 (2011)CrossRefGoogle Scholar
  15. 15.
    Lourenco, M., Barreto, J.P., Vasconcelos, F.: sRD-SIFT: Keypoint Detection and Matching in Images With Radial Distortion. In: IEEE-TRO (2012)Google Scholar
  16. 16.
    Gauglitz, S., Höllerer, T., Turk, M.: Evaluation of Interest Point Detectors and Feature Descriptors for Visual Tracking. IJCV 94, 335–360 (2011)zbMATHCrossRefGoogle Scholar
  17. 17.
    Willson, R.G., Shafer, S.A.: What is the center of the image? J. Opt. Soc. Am. A 11, 2946–2955 (1994)CrossRefGoogle Scholar
  18. 18.
    Barreto, J.P.: A Unifying Geometric Representation for Central Projection Systems. CVIU 103, 208–217 (2006)Google Scholar
  19. 19.
    Matthews, L., Ishikawa, T., Baker, S.: The Template Update Problem. IEEE-TPAMI 26, 810–815 (2004)CrossRefGoogle Scholar
  20. 20.
    Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms, vol. 2. Society for Industrial and Applied Mathematics (2006)Google Scholar
  21. 21.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3D Vision: From Images to Geometric Models. Springer (2003)Google Scholar
  22. 22.
    Barreto, J.P., Roquette, J., Sturm, P., Fonseca, F.: Automatic Camera Calibration Applied to Medical Endoscopy. In: BMVC (2009)Google Scholar
  23. 23.
    Nistér, D.: An Efficient Solution to the Five-Point Relative Pose Problem. IEEE-TPAMI 26 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miguel Lourenço
    • 1
  • João Pedro Barreto
    • 1
  1. 1.Institute for Systems and Robotics, Dept. of Electrical and Computer EngineeringUniversity of CoimbraPortugal

Personalised recommendations