Advertisement

Effective Use of Frequent Itemset Mining for Image Classification

  • Basura Fernando
  • Elisa Fromont
  • Tinne Tuytelaars
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7572)

Abstract

In this paper we propose a new and effective scheme for applying frequent itemset mining to image classification tasks. We refer to the new set of obtained patterns as Frequent Local Histograms or FLHs. During the construction of the FLHs, we pay special attention to keep all the local histogram information during the mining process and to select the most relevant reduced set of FLH patterns for classification. The careful choice of the visual primitives and some proposed extensions to exploit other visual cues such as colour or global spatial information allow us to build powerful bag-of-FLH-based image representations. We show that these bag-of-FLHs are more discriminative than traditional bag-of-words and yield state-of-the art results on various image classification benchmarks.

Keywords

Association Rule Visual Word Pattern Mining Image Representation Equal Error Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)Google Scholar
  2. 2.
    Uno, T., Asai, T., Uchida, Y., Arimura, H.: Lcm: An efficient algorithm for enumerating frequent closed item sets. In: FIMI (2003)Google Scholar
  3. 3.
    Cheng, H., Yan, X., Han, J., Hsu, C.W.: Discriminative frequent pattern analysis for effective classification. In: ICDE, pp. 716–725 (2007)Google Scholar
  4. 4.
    Nowozin, S., Tsuda, K., Uno, T., Kudo, T., Bakir, G.: Weighted substructure mining for image analysis. In: CVPR (2007)Google Scholar
  5. 5.
    Yao, B., Fei-Fei, L.: Grouplet: A structured image representation for recognizing human and object interactions. In: CVPR (2010)Google Scholar
  6. 6.
    Quack, T., Ferrari, V., Leibe, B., Van Gool, L.: Efficient mining of frequent and distinctive feature configurations. In: ICCV (2007)Google Scholar
  7. 7.
    Yuan, J., Wu, Y., Yang, M.: Discovery of collocation patterns: from visual words to visual phrases. In: CVPR (2007)Google Scholar
  8. 8.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Work. on Statistical Learning in CV, pp. 1–22 (2004)Google Scholar
  9. 9.
    Agarwal, A., Triggs, B.: Multilevel image coding with hyperfeatures. Int. J. Comput. Vision 78, 15–27 (2008)CrossRefGoogle Scholar
  10. 10.
    Sivic, J., Zisserman, A.: Video data mining using configurations of viewpoint invariant regions. In: CVPR (2004)Google Scholar
  11. 11.
    Yuan, J., Luo, J., Wu, Y.: Mining compositional features for boosting. In: CVPR (2008)Google Scholar
  12. 12.
    Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for effective classification. In: ICDE, pp. 169–178 (2008)Google Scholar
  13. 13.
    Gilbert, A., Illingworth, J., Bowden, R.: Fast realistic multi-action recognition using mined dense spatio-temporal features. In: ICCV, pp. 925–931 (2009)Google Scholar
  14. 14.
    Yuan, J., Yang, M., Wu, Y.: Mining discriminative co-occurrence patterns for visual recognition. In: CVPR, pp. 2777–2784 (2011)Google Scholar
  15. 15.
    Kim, S., Jin, X., Han, J.: Disiclass: discriminative frequent pattern-based image classification. In: Tenth Int. Workshop on Multimedia Data Mining (2010)Google Scholar
  16. 16.
    Quack, T., Ferrari, V., Van Gool, L.: Video Mining with Frequent Itemset Configurations. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 360–369. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: CVPR, pp. 1778–1785 (2009)Google Scholar
  18. 18.
    Yun, U., Leggett, J.J.: Wfim: Weighted frequent itemset mining with a weight range and a minimum weight. In: SDM 2005 (2005)Google Scholar
  19. 19.
    Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: ICCV (2011)Google Scholar
  20. 20.
    Yimeng Zhang, T.C.: Efficient kernels for identifying unbounded-order spatial features. In: CVPR (2009)Google Scholar
  21. 21.
    Boureau, Y.L., Bach, F., LeCun, Y., Ponce, J.: Learning mid-level features for recognition. In: CVPR (2010)Google Scholar
  22. 22.
    Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based approach. In: ACM SIGKDD (2005)Google Scholar
  23. 23.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for Large-Scale Image Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Svetlana Lazebnik, C.S., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)Google Scholar
  25. 25.
    Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak Hypotheses and Boosting for Generic Object Detection and Recognition. In: Pajdla, T., Matas, J. (eds.) ECCV 2004, Part II. LNCS, vol. 3022, pp. 71–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: ICVGIP, pp. 722–729 (2008)Google Scholar
  27. 27.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 Results (2007), http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
  28. 28.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)Google Scholar
  29. 29.
    van de Weijer, J., Schmid, C.: Applying color names to image description. In: ICIP, pp. 493–496 (2007)Google Scholar
  30. 30.
    Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classification. In: CVPR (2008)Google Scholar
  31. 31.
    Shahbaz Khan, F., van de Weijer, J., Vanrell, M.: Top-down color attention for object recognition. In: ICCV, pp. 979–986 (2009)Google Scholar
  32. 32.
    Xie, N., Ling, H., Hu, W., Zhang, X.: Use bin-ratio information for category and scene classification. In: CVPR, pp. 2313–2319 (2010)Google Scholar
  33. 33.
    Tuytelaars, T., Fritz, M., Saenko, K., Darrell, T.: The nbnn kernel. In: ICCV, pp. 1824–1831 (2011)Google Scholar
  34. 34.
    Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: BMVC (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Basura Fernando
    • 1
  • Elisa Fromont
    • 2
  • Tinne Tuytelaars
    • 1
  1. 1.ESAT-PSI, IBBTKU LeuvenBelgium
  2. 2.University of Saint-EtienneFrance

Personalised recommendations