Advertisement

Beyond the Line of Sight: Labeling the Underlying Surfaces

  • Ruiqi Guo
  • Derek Hoiem
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7576)

Abstract

Scene understanding requires reasoning about both what we can see and what is occluded. We offer a simple and general approach to infer labels of occluded background regions. Our approach incorporates estimates of visible surrounding background, detected objects, and shape priors from transferred training regions. We demonstrate the ability to infer the labels of occluded background regions in both the outdoor StreetScenes dataset and an indoor scene dataset using the same approach. Our experiments show that our method outperforms competent baselines.

Keywords

Training Image Query Image Foreground Object Visible Surface Occlude Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Geiger, A., Wojek, C., Urtasun, R.: Joint 3d estimation of objects and scene layout. In: NIPS (2011)Google Scholar
  2. 2.
    Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: ICCV (2009)Google Scholar
  3. 3.
    Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3d brain image segmentation. PAMI 32 (10)Google Scholar
  4. 4.
    Bileschi, S.M.: Streetscenes: towards scene understanding in still images. PhD thesis, Cambridge, MA, USA (2006) AAI0810070Google Scholar
  5. 5.
    Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge, VOC 2008 (2008) (results), http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html
  7. 7.
    Choi, M.J., Lim, J.J., Torralba, A., Willsky, A.S.: Exploiting hierarchical context on a large database of object categories. In: CVPR (2010)Google Scholar
  8. 8.
    Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an image. IJCV 75(1), 151–172 (2007)CrossRefGoogle Scholar
  9. 9.
    Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and Recognition Using Structure from Motion Point Clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gould, S., Gao, T., Koller, D.: Region-based segmentation and object detection. In: NIPS (2009)Google Scholar
  11. 11.
    Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: CVPR (2009)Google Scholar
  12. 12.
    Gupta, A., Efros, A.A., Hebert, M.: Blocks World Revisited: Image Understanding Using Qualitative Geometry and Mechanics. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 482–496. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Technical report. MIT (2005)Google Scholar
  14. 14.
    Li, C., Kowdle, A., Saxena, A., Chen, T.: Towards holistic scene understanding: Feedback enabled cascaded classification models. In: NIPS (2010)Google Scholar
  15. 15.
    Hoiem, D., Efros, A.A., Hebert, M.: Closing the loop on scene interpretation. In: CVPR (2008)Google Scholar
  16. 16.
    Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. IJCV 80(3), 300–316 (2008)CrossRefGoogle Scholar
  17. 17.
    Malisiewicz, T., Efros, A.A.: Beyond categories: The visual memex model for reasoning about object relationships. In: NIPS (2009)Google Scholar
  18. 18.
    Tighe, J., Lazebnik, S.: SuperParsing: Scalable Nonparametric Image Parsing with Superpixels. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 352–365. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing via label transfer. PAMI 33(12) (2011)Google Scholar
  20. 20.
    Zhang, H., Xiao, J., Quan, L.: Supervised Label Transfer for Semantic Segmentation of Street Scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 561–574. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. PAMI (2009)Google Scholar
  22. 22.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? PAMI 26(2), 147–159 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ruiqi Guo
    • 1
  • Derek Hoiem
    • 1
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations