Learning to Match Appearances by Correlations in a Covariance Metric Space

  • Sławomir Bąk
  • Guillaume Charpiat
  • Etienne Corvée
  • François Brémond
  • Monique Thonnat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)


This paper addresses the problem of appearance matching across disjoint camera views. Significant appearance changes, caused by variations in view angle, illumination and object pose, make the problem challenging. We propose to formulate the appearance matching problem as the task of learning a model that selects the most descriptive features for a specific class of objects. Learning is performed in a covariance metric space using an entropy-driven criterion. Our main idea is that different regions of the object appearance ought to be matched using various strategies to obtain a distinctive representation. The proposed technique has been successfully applied to the person re-identification problem, in which a human appearance has to be matched across non-overlapping cameras. We demonstrate that our approach improves state of the art performance in the context of pedestrian recognition.


covariance matrix re-identification appearance matching 


  1. 1.
    Tuzel, O., Porikli, F., Meer, P.: Region Covariance: A Fast Descriptor for Detection and Classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Boosted human re-identification using riemannian manifolds. Image and Vision Computing (2011)Google Scholar
  3. 3.
    Oncel, F.P., Porikli, F., Tuzel, O., Meer, P.: Covariance tracking using model update based on lie algebra. In: CVPR (2006)Google Scholar
  4. 4.
    Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian Recognition with a Learned Metric. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 501–512. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Zheng, W.-S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: CVPR (2011)Google Scholar
  6. 6.
    Bazzani, L., Cristani, M., Perina, A., Farenzena, M., Murino, V.: Multiple-shot person re-identification by hpe signature. In: ICPR, pp. 1413–1416 (2010)Google Scholar
  7. 7.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by symmetry-driven accumulation of local features. In: CVPR (2010)Google Scholar
  8. 8.
    Park, U., Jain, A., Kitahara, I., Kogure, K., Hagita, N.: Vise: Visual search engine using multiple networked cameras. In: ICPR, pp. 1204–1207 (2006)Google Scholar
  9. 9.
    Wang, X., Doretto, G., Sebastian, T., Rittscher, J., Tu, P.: Shape and appearance context modeling. In: ICCV, pp. 1–8 (2007)Google Scholar
  10. 10.
    Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. In: CVPR, pp. 1528–1535 (2006)Google Scholar
  11. 11.
    Gray, D., Tao, H.: Viewpoint Invariant Pedestrian Recognition with an Ensemble of Localized Features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Lin, Z., Davis, L.S.: Learning Pairwise Dissimilarity Profiles for Appearance Recognition in Visual Surveillance. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 23–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models using partial least squares. In: SIBGRAPI, pp. 322–329 (2009)Google Scholar
  14. 14.
    Prosser, B., Zheng, W.-S., Gong, S., Xiang, T.: Person re-identification by support vector ranking. In: BMVC, pp. 21.1–21.11 (2010)Google Scholar
  15. 15.
    Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person Re-identification by Descriptive and Discriminative Classification. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 91–102. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Cheng, D.S., Cristani, M., Stoppa, M., Bazzani, L., Murino, V.: Custom pictorial structures for re-identification. In: BMVC, pp. 68.1–68.11 (2011)Google Scholar
  17. 17.
    Hordley, S.D., Finlayson, G.D., Schaefer, G., Tian, G.Y.: Illuminant and device invariant colour using histogram equalisation. Pattern Recognition 38 (2005)Google Scholar
  18. 18.
    Förstner, W., Moonen, B.: A metric for covariance matrices. In: Quo vadis geodesia..?, Festschrift for Erik W. Grafarend on the occasion of his 60th birthday, TR Dept. of Geodesy and Geoinformatics, Stuttgart University (1999)Google Scholar
  19. 19.
    Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. Int. J. Comput. Vision 66, 41–66 (2006)CrossRefGoogle Scholar
  20. 20.
    Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1713–1727 (2008)CrossRefGoogle Scholar
  21. 21.
    Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. PhD thesis, Department of Computer Science, University of Waikato (1999)Google Scholar
  22. 22.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI, pp. 1022–1027 (1993)Google Scholar
  23. 23.
    Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill Higher Education (1991)Google Scholar
  24. 24.
    Zheng, W.-S., Gong, S., Xiang, T.: Associating groups of people. In: BMVC (2009)Google Scholar
  25. 25.
    Gray, D., Brennan, S., Tao, H.: Evaluating Appearance Models for Recognition, Reacquisition, and Tracking. In: PETS (2007)Google Scholar
  26. 26.
    Rother, C., Kolmogorov, V., Blake, A.: ”Grabcut”: interactive foreground extraction using iterated graph cuts. In: SIGGRAPH, pp. 309–314 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sławomir Bąk
    • 1
  • Guillaume Charpiat
    • 1
  • Etienne Corvée
    • 1
  • François Brémond
    • 1
  • Monique Thonnat
    • 1
  1. 1.INRIA Sophia Antipolis, STARS GroupSophia Antipolis CedexFrance

Personalised recommendations