Advertisement

Laplacian Meshes for Monocular 3D Shape Recovery

  • Jonas Östlund
  • Aydin Varol
  • Dat Tien Ngo
  • Pascal Fua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)

Abstract

We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3D meshes, we can turn the monocular 3D shape reconstruction of a deformable surface given correspondences with a reference image into a well-posed problem. Furthermore, this does not require any training data and eliminates the need to pre-align the reference shape with the one to be reconstructed, as was done in earlier methods.

Keywords

Control Point Input Image Reference Image Regularization Term Reprojection Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Salzmann, M., Fua, P.: Deformable Surface 3D Reconstruction from Monocular Images. Morgan-Claypool Publishers (2010)Google Scholar
  2. 2.
    Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: SIGGRAPH, pp. 187–194 (1999)Google Scholar
  3. 3.
    Salzmann, M., Fua, P.: Linear Local Models for Monocular Reconstruction of Deformable Surfaces. PAMI 33, 931–944 (2011)CrossRefGoogle Scholar
  4. 4.
    Gumerov, N., Zandifar, A., Duraiswami, R., Davis, L.S.: Structure of Applicable Surfaces from Single Views. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part III. LNCS, vol. 3023, pp. 482–496. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Liang, J., Dementhon, D., Doermann, D.: Flattening Curved Documents in Images. In: CVPR, pp. 338–345 (2005)Google Scholar
  6. 6.
    Perriollat, M., Bartoli, A.: A Quasi-Minimal Model for Paper-Like Surfaces. In: BenCos: Workshop Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images (2007)Google Scholar
  7. 7.
    Ecker, A., Jepson, A.D., Kutulakos, K.N.: Semidefinite Programming Heuristics for Surface Reconstruction Ambiguities. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 127–140. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Shen, S., Shi, W., Liu, Y.: Monocular Template-Based Tracking of Inextensible Deformable Surfaces under L 2-Norm. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 214–223. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Brunet, F., Hartley, R., Bartoli, A., Navab, N., Malgouyres, R.: Monocular Template-Based Reconstruction of Smooth and Inextensible Surfaces. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 52–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    White, R., Forsyth, D.: Combining Cues: Shape from Shading and Texture. In: CVPR (2006)Google Scholar
  11. 11.
    Moreno-Noguer, F., Salzmann, M., Lepetit, V., Fua, P.: Capturing 3D Stretchable Surfaces from Single Images in Closed Form. In: CVPR (2009)Google Scholar
  12. 12.
    Moreno-Noguer, F., Porta, J.M., Fua, P.: Exploring Ambiguities for Monocular Non-Rigid Shape Estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 370–383. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Perriollat, M., Hartley, R., Bartoli, A.: Monocular Template-Based Reconstruction of Inextensible Surfaces. IJCV 95 (2011)Google Scholar
  14. 14.
    Salzmann, M., Moreno-Noguer, F., Lepetit, V., Fua, P.: Closed-Form Solution to Non-rigid 3D Surface Registration. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 581–594. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian Surface Editing. In: Symposium on Geometry Processing (2004)Google Scholar
  16. 16.
    Summer, R., Popovic, J.: Deformation Transfer for Triangle Meshes. TOG (2004)Google Scholar
  17. 17.
    Bue, A.D., Bartoli, A.: Multiview 3D Warps. In: ICCV (2011)Google Scholar
  18. 18.
    Dimitrijević, M., Ilić, S., Fua, P.: Accurate Face Models from Uncalibrated and Ill-Lit Video Sequences. In: CVPR (2004)Google Scholar
  19. 19.
    Ilic, S., Fua, P.: Using Dirichlet Free Form Deformation to Fit Deformable Models to Noisy 3-D Data. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 704–717. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Salzmann, M., Urtasun, R., Fua, P.: Local Deformation Models for Monocular 3D Shape Recovery. In: CVPR (2008)Google Scholar
  21. 21.
    Terzopoulos, D., Witkin, A., Kass, M.: Symmetry-Seeking Models and 3D Object Reconstruction. IJCV 1, 211–221 (1987)CrossRefGoogle Scholar
  22. 22.
    Cohen, L., Cohen, I.: Finite-Element Methods for Active Contour Models and Balloons for 2D and 3D Images. PAMI 15 (1993)Google Scholar
  23. 23.
    Metaxas, D., Terzopoulos, D.: Constrained Deformable Superquadrics and Nonrigid Motion Tracking. PAMI 15 (1993)Google Scholar
  24. 24.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Recognition Using Random Ferns. PAMI 32 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jonas Östlund
    • 1
  • Aydin Varol
    • 1
  • Dat Tien Ngo
    • 1
  • Pascal Fua
    • 1
  1. 1.EPFL – CVLabLausanneSwitzerland

Personalised recommendations