Renormalization Returns: Hyper-renormalization and Its Applications

  • Kenichi Kanatani
  • Ali Al-Sharadqah
  • Nikolai Chernov
  • Yasuyuki Sugaya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7574)


The technique of “renormalization” for geometric estimation attracted much attention when it was proposed in early 1990s for having higher accuracy than any other then known methods. Later, it was replaced by minimization of the reprojection error. This paper points out that renormalization can be modified so that it outperforms reprojection error minimization. The key fact is that renormalization directly specifies equations to solve, just as the “estimation equation” approach in statistics, rather than minimizing some cost. Exploiting this fact, we modify the problem so that the solution has zero bias up to high order error terms; we call the resulting scheme hyper-renormalization. We apply it to ellipse fitting to demonstrate that it indeed surpasses reprojection error minimization. We conclude that it is the best method available today.


Minimization Principle Generalize Eigenvalue Problem Geometric Estimation True Shape Reprojection Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Al-Sharadqah, A., Chernov, N.: A doubly optimal ellipse fit. Comp. Stat. Data Anal. 56(9), 2771–2781 (2012)CrossRefGoogle Scholar
  2. 2.
    Chernov, N., Lesort, C.: Statistical efficiency of curve fitting algorithms. Comp. Stat. Data Anal. 47(4), 713–728 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chojnacki, W., Brooks, M.J., van den Hengel, A.: Rationalising the renormalization method of Kanatani. J. Math. Imaging Vis. 21(11), 21–38 (2001)CrossRefGoogle Scholar
  4. 4.
    Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Patt. Anal. Mach. Intell. 22(11), 1294–1303 (2000)CrossRefGoogle Scholar
  5. 5.
    Godambe, V.P. (ed.): Estimating Functions. Oxford University Press, New York (1991)zbMATHGoogle Scholar
  6. 6.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  7. 7.
    Kanatani, K.: Renormalization for unbiased estimation. In: Proc. 4th Int. Conf. Comput. Vis., Berlin, Germany, pp. 599–606 (May 1993)Google Scholar
  8. 8.
    Kanatani, K.: Statistical Optimization for Geometric Computation. Theory and Practice. Elsevier, Amsterdam (1996); reprinted, Dover, New York, U.S.A., (2005) zbMATHGoogle Scholar
  9. 9.
    Kanatani, K.: Ellipse fitting with hyperaccuracy. IEICE Trans. Inf. & Syst. E89-D(10), 2653–2660 (2006)CrossRefGoogle Scholar
  10. 10.
    Kanatani, K.: Statistical optimization for geometric fitting: Theoretical accuracy bound and high order error analysis. Int. J. Comput. Vis. 80(2), 167–188 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kanatani, K., Rangarajan, P., Sugaya, Y., Niitsuma, H.: HyperLS for parameter estimation in geometric fitting. IPSJ Trans. Comput. Vis. Appl. 3, 80–94 (2011)CrossRefGoogle Scholar
  13. 13.
    Kanatani, K., Sugaya, Y.: Unified computation of strict maximum likelihood for geometric fitting. J. Math. Imaging Vis. 38(1), 1–13 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: Problems with bilinear constraint. Int. J. Comput. Vis. 37(2), 127–150 (2000)zbMATHCrossRefGoogle Scholar
  15. 15.
    Matei, J., Meer, P.: Estimation of nonlinear errors-in-variables models for computer vision applications. IEEE Trans. Patt. Anal. Mach. Intell. 28(10), 1537–1552 (2006)CrossRefGoogle Scholar
  16. 16.
    Okatani, T., Deguchi, K.: On bias correction for geometric parameter estimation in computer vision. In: Proc. IEEE Conf. Computer Vision Pattern Recognition, Miami Beach, FL, U.S.A., pp. 959–966 (June 2009)Google Scholar
  17. 17.
    Okatani, T., Deguchi, K.: Improving accuracy of geometric parameter estimation using projected score method. In: Proc. 12th Int. Conf. Computer Vision, Kyoto, Japan, pp. 1733–1740 (September/October 2009)Google Scholar
  18. 18.
    Rangarajan, P., Kanatani, K.: Improved algebraic methods for circle fitting. Electronic J. Stat. 3, 1075–1082 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Taubin, G.: Estimation of planar curves, surfaces, and non-planar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 13(11), 1115–1138 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kenichi Kanatani
    • 1
  • Ali Al-Sharadqah
    • 2
  • Nikolai Chernov
    • 3
  • Yasuyuki Sugaya
    • 4
  1. 1.Department of Computer ScienceOkayama UniversityOkayamaJapan
  2. 2.Department of MathematicsUniversity of MississippiOxfordU.S.A.
  3. 3.Department of MathematicsUniversity of Alabama at BirminghamU.S.A.
  4. 4.Department of Information and Computer SciencesToyohashi University of TechnologyToyohashiJapan

Personalised recommendations