Advertisement

Shape from Single Scattering for Translucent Objects

  • Chika Inoshita
  • Yasuhiro Mukaigawa
  • Yasuyuki Matsushita
  • Yasushi Yagi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7573)

Abstract

Translucent objects strongly scatter incident light. Scattering makes the problem of estimating shape of translucent objects difficult, because reflective or transmitted light cannot be reliably extracted from the scattering. In this paper, we propose a new shape estimation method by directly utilizing scattering measurements. Although volumetric scattering is a complex phenomenon, single scattering can be relatively easily modeled because it is a simple one-bounce collision of light to a particle in a medium. Based on this observation, our method determines the shape of objects from the observed intensities of the single scattering and its attenuation. We develop a solution method that simultaneously determines scattering parameters and the shape based on energy minimization. We demonstrate the effectiveness of the proposed approach by extensive experiments using synthetic and real data.

References

  1. 1.
    Godin, G., Rioux, M., Beraldin, J.A.: An assessment of laser range measurement on marble surfaces. In: Conference on Optical 3D Measurement Techniques (2001)Google Scholar
  2. 2.
    Chen, T., Lensch, H.P.A., Fuchs, C., Seidel, H.P.: Polarization and phase-shifting for 3d scanning of translucent objects. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2007)Google Scholar
  3. 3.
    Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.P.: Disco - acquisition of translucent objects. In: Proc. ACM SIGGRAPH, pp. 835–844 (2004)Google Scholar
  4. 4.
    Gupta, M., Agrawal, A., Veeraraghavan, A., Narasimhan, S.: Structured light 3d scanning in the presence of global illumination. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2011)Google Scholar
  5. 5.
    Horn, B.K.P.: Shape from shading: A method for obtaining the shape of a smooth opaque object from one view. Technical report, Massachusetts Institute of Technology (1970)Google Scholar
  6. 6.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 139–144 (1980)CrossRefGoogle Scholar
  7. 7.
    Healey, G., Binford, T.O.: Local shape from specularity. Computer Vision, Graphics, and Image Processing 42, 62–86 (1987)CrossRefGoogle Scholar
  8. 8.
    Sankaranarayanan, A.C., Veeraraghavan, A., Tuzel, O., Agrawal, A.: Specular surface reconstruction from sparse reflection correspondences. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2010)Google Scholar
  9. 9.
    Liao, M., Wang, L., Yang, R., Gong, M.: Light fall-off stereo. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2007)Google Scholar
  10. 10.
    Miyazaki, D., Ikeuchi, K.: Shape estimation of transparent objects by using inverse polarization raytracing. IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI) 29, 2018–2030 (2007)CrossRefGoogle Scholar
  11. 11.
    Huynh, C.P., Robles-Kelly, A., Hancock, E.: Shape and refractive index recovery from single-view polarisation images. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2010)Google Scholar
  12. 12.
    Kutulakos, K.N., Steger, E.: A theory of refractive and specular 3d shape by light-path triangulation. In: Proc. of International Conference on Computer Vision, ICCV (2005)Google Scholar
  13. 13.
    Wetzstein, G., Roodnick, D., Heidrich, W., Raskar, R.: Refractive shape from light field distortion. In: Proc. of International Conference on Computer Vision, ICCV (2011)Google Scholar
  14. 14.
    Trifonov, B., Bradley, D., Heidrich, W.: Tomographic reconstruction of transparent objects. In: Proc. of Eurographics Symposium on Rendering (2006)Google Scholar
  15. 15.
    Hullin, M.B., Fuchs, M., Ihrke, I., Seidel, H.P., Lensch, H.P.A.: Fluorescent immersion range scanning. ACM Trans. on Graph (ToG) 27, article no. 87 (2008)Google Scholar
  16. 16.
    Morris, N.J., Kutulakos, K.N.: Reconstructing the surface of inhomogeneous transparent scenes by scatter trace photography. In: Proc. of International Conference on Computer Vision, ICCV (2007)Google Scholar
  17. 17.
    Narasimhan, S.G., Nayar, S.K., Sun, B., Koppal, S.J.: Structured light in scattering media. In: Proc. of International Conference on Computer Vision, ICCV (2005)Google Scholar
  18. 18.
    Kim, J., Lanman, D., Mukaigawa, Y., Raskar, R.: Descattering Transmission via Angular Filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 86–99. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Treibitz, T., Schechner, Y.Y.: Instant 3descatter. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2006)Google Scholar
  20. 20.
    Florescu, L., Schotland, J.C., Markel, V.A.: Single-scattering optical tomography. Physical Review E 79, 036607 (2009)Google Scholar
  21. 21.
    Mukaigawa, Y., Yagi, Y., Raskar, R.: Analysis of light transport in scattering media. In: Proc. of IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2010)Google Scholar
  22. 22.
    Narasimhan, S.G., Gupta, M., Donner, C., Ramamoorthi, R., Nayar, S.K., Jensen, H.W.: Acquiring scattering properties of participating media by dilution. In: Proc. ACM SIGGRAPH, pp. 1003–1012 (2006)Google Scholar
  23. 23.
    Hawkins, T., Einarsson, P., Debevec, P.: Acquisition of time-varying participating media. ACM Trans. on Graph (ToG) 24, 812–815 (2005)CrossRefGoogle Scholar
  24. 24.
    Gu, J., Nayar, S.K., Grinspun, E., Belhumeur, P.N., Ramamoorthi, R.: Compressive Structured Light for Recovering Inhomogeneous Participating Media. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 845–858. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. In: Proc. ACM SIGGRAPH, vol. 25, pp. 935–944 (2006)Google Scholar
  26. 26.
    Nayar, S.K., Ikeuchi, K., Kanade, T.: Shape from interreflections. International Journal of Computer Vision (IJCV) 6, 173–195 (1991)CrossRefGoogle Scholar
  27. 27.
    Liu, S., Ng, T.-T., Matsushita, Y.: Shape from Second-Bounce of Light Transport. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 280–293. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Beer, A.: Bestimmung der absorption des rothen lichts in farbigen flussigkeiten. Annalen der Physik und Chemie 86, 78–88 (1852)CrossRefGoogle Scholar
  29. 29.
    Henyey, L.G., Greenstein, J.L.: Diffuse radiation in the galaxy. Astrophysical Journal 93, 70–83 (1941)CrossRefGoogle Scholar
  30. 30.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks (1995)Google Scholar
  31. 31.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. The Computer Journal 7, 308–313 (1965)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chika Inoshita
    • 1
  • Yasuhiro Mukaigawa
    • 1
  • Yasuyuki Matsushita
    • 2
  • Yasushi Yagi
    • 1
  1. 1.Osaka UniversityJapan
  2. 2.Microsoft Research AsiaChina

Personalised recommendations