Robust Point Matching Revisited: A Concave Optimization Approach

  • Wei Lian
  • Lei Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7573)


The well-known robust point matching (RPM) method uses deterministic annealing for optimization, and it has two problems. First, it cannot guarantee the global optimality of the solution and tends to align the centers of two point sets. Second, deformation needs to be regularized to avoid the generation of undesirable results. To address these problems, in this paper we first show that the energy function of RPM can be reduced to a concave function with very few non-rigid terms after eliminating the transformation variables and applying linear transformation; we then propose to use concave optimization technique to minimize the resulting energy function. The proposed method scales well with problem size, achieves the globally optimal solution, and does not need regularization for simple transformations such as similarity transform. Experiments on synthetic and real data validate the advantages of our method in comparison with state-of-the-art methods.


Energy Function Chinese Character Iterative Close Point Point Correspondence Convex Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision 13, 119–152 (1994)CrossRefGoogle Scholar
  3. 3.
    Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding 89, 114–141 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Myronenko, A., Song, X.: Point set registration: Coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 2262–2275 (2010)CrossRefGoogle Scholar
  5. 5.
    Tsin, Y., Kanade, T.: A Correlation-Based Approach to Robust Point Set Registration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 558–569. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Jian, B., Vemuri, B.C.: A robust algorithm for point set registration using mixture of gaussians. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1246–1251 (2005)Google Scholar
  7. 7.
    Sofka, M., Yang, G., Stewart, C.V.: Simultaneous covariance driven correspondence (cdc) and transformation estimation in the expectation maximization framework. In: IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  8. 8.
    Horst, R., Tuy, H.: Global Optimization, Deterministic Approaches. Springer (1996)Google Scholar
  9. 9.
    Maciel, J., Costeira, J.: A global solution to sparse correspondence problems. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 187–199 (2003)CrossRefGoogle Scholar
  10. 10.
    Olsson, C., Kahl, F., Oskarsson, M.: Branch-and-bound methods for euclidean registration problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 783–794 (2009)CrossRefGoogle Scholar
  11. 11.
    Pfeuffer, F., Stiglmayr, M., Klamroth, K.: Discrete and geometric branch and bound algorithms for medical image registration. Annals of Operations Research 196, 737–765 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Golub, G.H., Loan, C.F.V.: Matrix computations. The Johns Hopkins University Press (1996)Google Scholar
  13. 13.
    Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Dover Publications, Inc., New York (1998)zbMATHGoogle Scholar
  14. 14.
    Jiang, H., Drew, M.S., Li, Z.-N.: Matching by linear programming and successive convexification. IEEE Trans. Pattern Analysis and Machine Intelligence 29, 959–975 (2007)CrossRefGoogle Scholar
  15. 15.
    Caetano, T.S., Caelli, T.: A unified formulation of invariant point pattern matching. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 121–124 (2006)Google Scholar
  16. 16.
    Lian, W., Zhang, L.: Rotation Invariant Non-rigid Shape Matching in Cluttered Scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 506–518. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Thayananthan, A., Stenger, B., Torr, P.H.S., Cipolla, R.: Shape context and chamfer matching in cluttered scenes. In: IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 127–133 (2003)Google Scholar
  18. 18.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  19. 19.
    Vikstén, F., Forssén, P.E., Johansson, B., Moe, A.: Comparison of local image descriptors for full 6 degree-of-freedom pose estimation. In: IEEE International Conference on Robotics and Automation, pp. 2779–2786 (2009)Google Scholar
  20. 20.
    Caetano, T.S., Caelli, T., Schuurmans, D., Barone, D.A.C.: Graphical models and point pattern matching. IEEE Trans. Pattern Analysis and Machine Intelligence 28(10), 1646–1663 (2006)CrossRefGoogle Scholar
  21. 21.
    Zheng, Y., Doermann, D.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans. Pattern Analysis and Machine Intelligence 28, 643–649 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wei Lian
    • 1
  • Lei Zhang
    • 2
  1. 1.Dept. of Computer ScienceChangzhi UniversityChangzhiChina
  2. 2.Dept. of ComputingThe Hong Kong Polytechnic UniversityHong Kong

Personalised recommendations