New Metrics to Evaluate Pattern Recognition in Remote Sensing Images

  • Manel Kallel
  • Mohamed Naouai
  • Yosr Slama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

The continuous development of pattern recognition approaches increases the need for evaluation tools to quantify algorithms performance and establish precise inter-algorithm comparison. So far, few performance evaluating metrics in pattern recognition algorithms are known in the literature, especially in remote sensing images. In this paper, four metrics are proposed for this purpose. The advantages and drawbacks of these metrics are first described, then some experimentation results are the presented in order to validate our contribution.

Keywords

Evaluating metrics pattern recognition performance evaluation remote sensing 

References

  1. 1.
    Fukunaga, K.: Introduction to statistical Pattern Recognition. Academic Press (1990)Google Scholar
  2. 2.
    Watanabe, S.: Pattern Recognition: Human and Mechanical. Wiley, New York (1985)Google Scholar
  3. 3.
    Li, D., Liu, Y., Chen, Y.: Computer and Computing Technologies in Agriculture IV. In: 4th IFIPTC 12 Conference, CCTA, China (2010)Google Scholar
  4. 4.
    Mariano, V.Y., et al.: Performance evaluation of object Detection Algorithms. Pattern Recognition 3, 965–969 (2002)Google Scholar
  5. 5.
    Zhao, Y., et al.: A benchmark for interactive image segmentation algorithms. In: Person-Oriented Vision (POV), pp. 33–38 (2011)Google Scholar
  6. 6.
    Yasnoff, W.A., Galbraith, W., Bacus, J.W.: Errormeasures for objective assessment of scene segmentation algorithms. AQC 1, 107–121 (1979)Google Scholar
  7. 7.
    Philipp-Foliguet, S., Guigues, L.: Evaluation de la segmentation d’images: état de l’art, nouveaux indices et comparaison. TS. Traitement du Signal 23(2), 109–124 (2006) ISSN 0765-0019MATHGoogle Scholar
  8. 8.
    McQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Proc. Fifth Berkeley Symp. Math. Statistics and Probability, pp. 281–297 (1967)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks IV, pp. 1942–1948. IEEE, Piscataway (1995)Google Scholar
  10. 10.
    Sellaouti, A., Hamouda, A., Deruyver, A., Wemmert, C.: Hierarchical Classification-Based Region Growing (HCBRG): A Collaborative Approach for Object Segmentation and Classification. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part I. LNCS, vol. 7324, pp. 51–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manel Kallel
    • 1
  • Mohamed Naouai
    • 1
  • Yosr Slama
    • 1
  1. 1.Faculty of Science of TunisUniversity Tunis el Manar DSITunis BelvidaireTunisia

Personalised recommendations