Automatic Classification of Volcanic Earthquakes in HMM-Induced Vector Spaces

  • Riccardo Avesani
  • Alessio Azzoni
  • Manuele Bicego
  • Mauricio Orozco-Alzate
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

Even though hidden Markov models (HMMs) have been used for the automatic classification of volcanic earthquakes, their usage has been so far limited to the Bayesian scheme. Recently proposed alternatives, proven in other application scenarios, consist in building HMM-induced vector spaces where discriminative classification techniques can be applied. In this paper, a simple vector space is induced by considering log-likelihoods of the HMMs (per-class) as dimensions. Experimental results show that the discriminative classification in such an induced space leads to better performances than those obtained with the standard Bayesian scheme.

Keywords

Automatic classification generative embedding hidden Markov models model-induced feature space seismic-volcanic signals 

References

  1. 1.
    Stern, C.R.: Active Andean volcanism: its geologic and tectonic setting. Andean Geology 31(2), 161–206 (2004)Google Scholar
  2. 2.
    Orozco-Alzate, M., Acosta-Muñoz, C., Londoño-Bonilla, J.M.: The Automated Identification of Volcanic Earthquakes: Concepts, Applications and Challenges. In: D’Amico, S. (ed.) Earthquake Research and Analysis - Seismology, Seismotectonic and Earthquake Geology, pp. 345–370. InTech, Rijeka (2012)Google Scholar
  3. 3.
    Benítez, M.C., Ramírez, J., Segura, J.C., Ibáñez, J.M., Almendros, J., García-Yeguas, A., Cortés, G.: Continuous HMM-based seismic-event classification at Deception Island, Antarctica. IEEE Transactions on Geoscience and Remote Sensing 45(1), 138–146 (2007)CrossRefGoogle Scholar
  4. 4.
    Beyreuther, M., Wassermann, J.: Continuous earthquake detection and classification using discrete hidden Markov models. Geophysical Journal International 175(3), 1055–1066 (2008)CrossRefGoogle Scholar
  5. 5.
    Ibáñez, J.M., Benítez, C., Gutiérrez, L.A., Cortés, G., García-Yeguas, A., Alguacil, G.: The classification of seismo-volcanic signals using Hidden Markov Models as applied to the Stromboli and Etna volcanoes. Journal of Volcanology and Geothermal Research 187(3-4), 218–226 (2009)CrossRefGoogle Scholar
  6. 6.
    Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., Müller, K.R.: A new discriminative kernel from probabilistic models. Neural Computation 14(10), 2397–2414 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene Classification Via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Perina, A., Cristani, M., Castellani, U., Murino, V., Jojic, N.: A hybrid generative/discriminative classification framework based on free-energy terms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2058–2065. IEEE (2009)Google Scholar
  9. 9.
    Bicego, M., Murino, V., Figueiredo, M.A.T.: Similarity-based classification of sequences using hidden Markov models. Pattern Recognition 37(12), 2281–2291 (2004)Google Scholar
  10. 10.
    Bicego, M., Pekalska, E., Tax, D.M.J., Duin, R.P.W.: Component-based discriminative classification for hidden Markov models. Pattern Recognition 42(11), 2637–2648 (2009)MATHCrossRefGoogle Scholar
  11. 11.
    Lesage, P.: Interactive Matlab software for the analysis of seismic volcanic signals. Computers & Geosciences 35(10), 2137–2144 (2009)CrossRefGoogle Scholar
  12. 12.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Riccardo Avesani
    • 1
  • Alessio Azzoni
    • 1
  • Manuele Bicego
    • 1
  • Mauricio Orozco-Alzate
    • 2
  1. 1.Dipartimento di InformaticaUniversità degli Studi di VeronaVeronaItaly
  2. 2.Departamento de Informática y ComputaciónUniversidad Nacional de Colombia - Sede ManizalesManizales (Caldas)Colombia

Personalised recommendations