A Method for Reducing the Cardinality of the Pareto Front

  • Ivan Cabezas
  • Maria Trujillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7441)

Abstract

Multi-objective problems are characterised by the presence of a set of optimal trade-off solutions –a Pareto front–, from which a solution has to be selected by a decision maker. However, selecting a solution from a Pareto front depends on large quantities of solutions to select from and dimensional complexity due to many involved objectives, among others. Commonly, the selection of a solution is based on preferences specified by a decision maker. Nevertheless a decision maker may have not preferences at all. Thus, an informed decision making process has to be done, which is difficult to achieve. In this paper, selecting a solution from a Pareto front is addressed as a multi-objective problem using two utility functions and operating in the objective space. A quantitative comparison of stereo correspondence algorithms performance is used as an application domain.

Keywords

Multi-objective problems Pareto front decision making computer vision stereo correspondence quantitative evaluation 

References

  1. 1.
    Ben Said, L., Bechikn, S., Ghédira, K.: The r-Dominance: A New Dominance Relation for Interactive Evolution Multi-criteria Decision Making. IEEE Trans. on Evolutionary Computation 14(5), 801–818 (2010)CrossRefGoogle Scholar
  2. 2.
    Deb, K., Pratap, P., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  3. 3.
    Zitzler, E., Laumanns, L., Thiele, L.: SPEA 2: Improving the Strength Pareto Evolution-ary Algorithm for Multiobjective Optimisation. In: Giannakoglou, K.C. (ed.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems, pp. 95–100 (2002)Google Scholar
  4. 4.
    Knowles, J., Corne, D.: Approximating the Nondominated FrontUsing the Pareto Ar-chived Evolutionary Strategy. In: Proc. IEEE Congress on Evolutionary Computation, vol. 8(2), pp. 173–195 (2000)Google Scholar
  5. 5.
    Cvetkovic, D., Coello, C.: Human Preferences and their Applications in Evolutionary Multi-objective Optimisation. In: Yaochun, J. (ed.) Knowledge Incorporation in Evolutionary Computation, pp. 479–502. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Brockhoff, D., Zitzler, E.: Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 533–542. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cvetkovic, D., Parmee, I.: Preferences and their Application in Evolutionary Multiobjec-tive Optimisation. IEEE Trans. Evolutionary Computation 6(1), 42–57 (2002)CrossRefGoogle Scholar
  8. 8.
    Das, I.: On Characterizing the “knee” of the Pareto Curve Based on Normal-Boundary Intersection. Structural and Multidisciplinary Optimization 18(2), 107–115 (1999)Google Scholar
  9. 9.
    Rachmawati, L., Srinivasan, D.: Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey. In: Proc. IEEE Congress on Evolutionary Computation, pp. 962–968 (2006)Google Scholar
  10. 10.
    López, A., Coello, C.: Study of preference relations in many-objective optimization. In: Proc. Genetic and Evolutionary Computation Conference, pp. 611–618 (2009)Google Scholar
  11. 11.
    Rachmawati, L., Srinivasan, D.: Multiobjective Evolutionary Algorithm withControllable Focus on the Knees of the Pareto Front. IEEE Trans. Evolutionary Computation 13(4), 810–824 (2009)CrossRefGoogle Scholar
  12. 12.
    Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision 47, 7–42 (2002)MATHCrossRefGoogle Scholar
  13. 13.
    Cabezas, I., Trujillo, M., Florian, M.: An Evaluation Methodology for Stereo Correspon-dence Algorithms. In: Proc. Intl. Joint Conference on Computer Vision and Computer Graphics Theory and Applications, pp. 154–163 (2012)Google Scholar
  14. 14.
    Parreiras, R., Maciel, J., Vasconcelos, J.: The a posteriori decision in multiobjective opti-mization problems with smarts, promethee II, and a fuzzy algorithm. IEEE Trans. Magnetics 42(4), 1139–1142 (2006)CrossRefGoogle Scholar
  15. 15.
    Bentley, P., Wakefield, J.: Finding Acceptable solutions in the Pareto-Optimal Range using Multiobjective Genetic Algorithms. In: Chawdhry, P., et al. (eds.) Soft Computing in Engineering Design and Manufacturing, pp. 231–240 (1997)Google Scholar
  16. 16.
    Scharstein, D., Szeliski, R.: Middlebury Stereo Evaluation - Version 2, http://vision.middlebury.edu/stereo/eval/
  17. 17.
    Cabezas, I., Padilla, V., Trujillo, M.: A Measure for Accuracy Disparity Maps Evaluation. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 223–231. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Van der Mark, W., Gavrila, D.: Real Time Dense Stereo for Intelligent Vehicles. IEEE Trans. Intelligent Transportation Systems 7(1), 38–50 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ivan Cabezas
    • 1
  • Maria Trujillo
    • 1
  1. 1.Laboratorio de Investigación en Multimedia y VisiónEscuela de Ingeniería de Sistemas y Computación, Ciudad Universitaria MeléndezCaliColombia

Personalised recommendations