Advertisement

Introduction to Shock Wave Physics of Condensed Matter

  • Jerry W. ForbesEmail author
Chapter
Part of the Shock Wave and High Pressure Phenomena book series

Abstract

The scientific field of shock wave physics uses information from a number of sub-fields, such as hydrodynamics, continuum mechanics, thermodynamics, electrodynamics, and quantum mechanics. Information is presented from these sub-fields, as needed. The reader is responsible for background reading in these sub-fields for further understanding.

Keywords

Shock Wave Detonation Wave Shock Compression Plane Shock Wave Shock Wave Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

prad0198 v2 (MOV 40.9 MB)

prad0115 v2 (MOV 167 MB)

References

  1. 1.
    J.W. Forbes, The history of the APS topical group on shock compression of condensed matter, in Shock Compression of Condensed Matter – 2001. AIP Conference Proceedings, vol. 620 (American Institute of Physics, Melville, 2002), pp. 11–19Google Scholar
  2. 2.
    D. Bancroft, E.L. Petersen, S. Minshall, Polymorphism of iron at high pressure. J. Appl. Phys. 27(3), 291 (1956)CrossRefGoogle Scholar
  3. 3.
    P.W. Bridgman, High pressure polymorphism of iron, Letter to Editor. J. Appl. Phys. 27, 659 (1956)Google Scholar
  4. 4.
    R.A. Graham, Bridgman’s concern, in High-Pressure Science and Technology – 1993. AIP Conference Proceedings, vol. 309 (AIP Press, New York, 1994), pp. 3–12Google Scholar
  5. 5.
    M.H. Rice, R.G. McQueen, J.M. Walsh, Solid State Physics, vol. VI (Academic, New York, 1958), pp. 1–63Google Scholar
  6. 6.
    W.E. Deal Jr., Dynamic high pressure techniques, in Modern High Pressure Techniques, ed. by R.H. Wentorf Jr. (Butterworths, Washington, DC, 1962), pp. 200–227Google Scholar
  7. 7.
    J.R. Asay, S. Mohsen (eds.), High Pressure Shock Compression of Solids (Springer Verlag, New York, 1993)zbMATHGoogle Scholar
  8. 8.
    J.W. Taylor, Thunder in the mountains, in Shock Waves in Condensed Matter-1983 (Elsevier Science, New York, 1984), pp. 3–15Google Scholar
  9. 9.
    R.P. Drake, High-energy-density physics. Physics Today June, 28–33 (2010)Google Scholar
  10. 10.
    P.A. Rigg, C.L. Schwartz, R.S. Hixson, G.E. Hogan, K.K. Kwiatkowski, F.G. Mariam, M. Marr-Lyon, F.E. Merrill, C.L. Morris, P. Rightly, A. Saunders, D. Tuba, Proton radiography and accurate density measurements: A window into shock wave processes. Phys. Rev. B 77, 220101(R) (2008)Google Scholar
  11. 11.
    P.A. Rigg, C.L. Schwartz, R.S. Hixson, F.E. Merrill, C.L. Morris, A. Saunders, pRad Team, Direct shock density measurements using plate impact and proton radiography, LA-UR-07-1672. Presentation at TMS 2008 Annual Meeting, New Orleans, 9–13 March 2008Google Scholar
  12. 12.
    E.N. Ferm, S. Dennison, R. Lopez, K. Prestridge, J.P. Quintana, C. Espinoza, G. Hogan, N. King, J.D. Lopez, F. Merrill, K. Morley, C.L. Morris, P. Pazuchanis, A. Saunders, S.A. Baker, R. Liljestrand, R.T. Thompson, Proton radiography experiments on shocked high explosive products. in Shock Compression of Condensed Matter-2003, AIP Conference Proceedings. 706, 2004 and Presentation at meeting, LA-UR-03-9219, p. 839Google Scholar
  13. 13.
    C.L. Mader (ed.), LASL PHERMIX, vol. I–III (University of California Press, Berkeley, 1980)Google Scholar
  14. 14.
    R.D. Dick, Pulsed high-energy radiographic machine emitting x-rays (PHERMIX): Applications to study high-pressure flow and detonation waves. in Proceedings of SPIE, Vol 312, 1st European Conference on Cineradiography with Photons or Particles, Paris, 18–21 May 1983Google Scholar

Hugoniots of Inert/Unreacted Material

  1. R.A. Kinslow (ed.), High-Velocity Impact Phenomena (Academic, New York, 1970)Google Scholar
  2. S.P. Marsh (ed.), LASL Shock Hugoniot Data (University of California Press, Berkeley, 1980)Google Scholar
  3. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, W.J. Carter, The equation of state of solids from shock wave studies, in High-Velocity Impact Phenomena, ed. by R. Kinslow (Academic, New York, 1970). Has thermodynamic parameters in Appendices of many materialsGoogle Scholar
  4. M. Van Thiel,Compendium of Shock Wave Data, LLNL report UCRL-50108, June 1971Google Scholar
  5. R.F. Trunin, Experimental Data on Shock Compression and Adiabatic Expansion of Condensed Matter (RFNC-VNIEF, Sarov, 2001)Google Scholar

General References

  1. L.V. Al’tschuler, Use of shock waves in high-pressure physics. Sov. Phys. Usp. 8(1), 52–91 (1965). July–August 1965CrossRefGoogle Scholar
  2. S.S. Batsanov, Effects of Explosion on Materials: Modification and Synthesis Under High-Pressure Shock Compression (Springer, New York, 1994)Google Scholar
  3. A.V. Bushman, G.I. Kanel, A.L. Ni, V.E. Fortov, Intense dynamic loading of condensed matter. Institute of Chemical Physics, USSR Academy of Science, 1988, (trans: English by S. Chomet, and English version J. Shaner (ed.)). Taylor and Francis, London (1993)Google Scholar
  4. L.C. Chhabildas, L. Davison, Y. Horie (eds.), The Science of High-Velocity Impact (Springer, New York, 2005)Google Scholar
  5. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer, Berlin, 1976)zbMATHCrossRefGoogle Scholar
  6. A.N. Dremin, Toward Detonation Theory (Springer, New York, 1999)CrossRefGoogle Scholar
  7. D.S. Drumheller, Introduction to Wave Propagation in Nonlinear Fluids and Solids (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  8. G.E. Duvall, Bull. Seismol. Soc. Am. 52, 869 (1962)Google Scholar
  9. G.E. Duvall, Shock waves in solids, in Shock Metamorphism of Natural Materials, ed. by B.M. French, N.M. Short (Mono Book Corporation, Baltimore, 1968)Google Scholar
  10. G.E. Duvall, Shock waves in condensed media, in Physics of High Energy Density (Academic, New York, 1971)Google Scholar
  11. G.E. Duvall, G.R. Fowles, in High Pressure Physics and Chemistry, ed. by R.S. Bradley, vol. 2 (Academic, New York, 1963)Google Scholar
  12. V.E. Fortov, L.V. Al’tshuler, R.F. Trunin, A.I. Funtikov, Shock Waves and Extreme States of Matter (Springer, New York, 2004)Google Scholar
  13. D. Grady, Fragmentation of Rings and Shells: The Legacy of N. F. Mott (Springer, Berlin/New York, 2006)Google Scholar
  14. R. Graham, Solids Under High-Pressure Shock Compression Mechanics, Physics, and Chemistry (Springer, New York, 1993)CrossRefGoogle Scholar
  15. Y. Horie, L. Davison, N. Thadhani, High-Pressure Shock Compression of Solids VI: Old Paradigms and New Challenges (Springer, New York, 2003)CrossRefGoogle Scholar
  16. J.N. Johnson, R. Cheret (eds.), Classic Papers in Shock Compression Science (Springer, New York, 1998)zbMATHGoogle Scholar
  17. G.I. Kanel, S.V. Razorenov, V.E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004)CrossRefGoogle Scholar
  18. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, W.J. Carter, The equation of state of solids from shock wave studies, in High-Velocity Impact Phenomena, ed. by R. Kinslow (Academic Press, New York, 1970)Google Scholar
  19. M.A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994)zbMATHCrossRefGoogle Scholar
  20. W.J. Nellis, Encyclopedia of Applied Physics, vol 18, (Wiley, Hoboken, N.J. 1997), p. 541Google Scholar
  21. V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer, New York, 2001)CrossRefGoogle Scholar
  22. M.H. Rice, R.G. McQueen, J.M. Walsh, Solid State Physics, vol. VI (Academic, New York, 1958), pp. 1–63Google Scholar
  23. A.B. Sawaoka (ed.), Shock Waves in Material Science (Springer, Tokyo/New York, 1993)Google Scholar
  24. I.C. Skidmore, An introduction to shock waves in solids. Appl. Mater. Res. 4, 131–147 (1965)Google Scholar
  25. M. Suceska, Test Methods for Explosives (Springer, New York, 1995)CrossRefGoogle Scholar
  26. R.F. Trunin, Shock Compression of Condensed Materials (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  27. Y.B. Zeldovich, Y.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1966)Google Scholar
  28. M.V. Zhernokhletov, Methods for Study of Substance Properties under Intensive Dynamic Loading (Springer, New York, 2005)Google Scholar
  29. J.A. Zukas, W.P. Walters (eds.), Explosive Effects and Applications (Springer, New York, 1998)Google Scholar

Springer Series: Shock Waves and High Pressure Phenomena

  1. T. Antoun, D.R. Curran, G.I. Kanel, S.V. Razorenov, A. Utikin, Spall Fracture (Springer, New York, 2002)Google Scholar
  2. J. Asay, M. Shahinpoor (eds.), High Pressure Shock Compression of Solids (Springer, New York/Heidelberg, 1993)zbMATHGoogle Scholar
  3. R. Cherét, Detonation of Condensed Explosives (Springer, New York, 1993)CrossRefGoogle Scholar
  4. L. Davison, D. Grady, M. Shahinpoor (eds.), High-Pressure Shock Compression of Solids II (Springer, New York, 1996)zbMATHGoogle Scholar
  5. L. Davison, Y. Horie, M. Shahinpoor (eds.), High-Pressure Shock Compression of Solids IV (Springer, New York, 1997)Google Scholar
  6. L. Davison, M. Shahinpoor (eds.), High-Pressure Shock Compression of Solids III (Springer, New York, 1998)Google Scholar
  7. A.N. Dremin, Toward Detonation Theory (Springer, New York, 1999)CrossRefGoogle Scholar
  8. W.J. Nellis, Dynamic compression of materials: Metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 1479 (2006)CrossRefGoogle Scholar

Springer Series: Shock Wave Science and Technology Reference Library

  1. B.W. Asay (ed.), Non-Shock Initiation of Explosives, vol. 5 (Springer, Berlin/Heidelberg, 2010)Google Scholar
  2. M. van Dongen (ed.), Multiphase Flows I, vol. 1 (Springer, Berlin/Heidelberg, 2007)Google Scholar
  3. Y. Horie (ed.), Solids I, vol. 2 (Springer, Berlin, 2007)Google Scholar
  4. Y. Horie (ed.), Solids II, vol. 3 (Springer, Berlin, 2009)Google Scholar
  5. F. Zhang (ed.), Heterogeneous Detonation, vol. 4 (Springer, Berlin, 2009)Google Scholar
  6. F. Zhang (ed.), Detonation Dynamics, vol. 6 (Springer, Berlin/London, 2012)Google Scholar

Shock Wave Compression of Condensed Matter Conference Proceedings

  1. M. Elert, M.D. Furnish, R. Chau, N. Holmes, J. Nguyen (eds.), Shock Compression of Condensed Matter – 2007, Waikoloa, Hawai’i (AIP #955, New York, 2007)Google Scholar
  2. M.L. Elert, W.T. Buttler, M. Furnish, W.W. Anderson, W.G. Proud (eds.), Shock Compression of Condensed Matter – 2009, Nashville (AIP# 1195, New York, 2009)Google Scholar
  3. M.L. Elert, W.T. Buttler, J.P. Borg, J.L. Jordan, T.J. Vogler (eds.), Shock Compression of Condensed Matter – 2011. AIP Conference Proceedings, vol. 1426 (American Institute of Physics, Melville, 2012)Google Scholar
  4. M.D. Furnish, L.C. Chhabildas, R.S. Hixon (eds.), Shock Compression of Condensed Matter-1999, Snowbird (AIP #505, New York, 2000)Google Scholar
  5. M.D. Furnish, N.N. Thadhani (eds.), Shock Compression of Condensed Matter-2001, Atlanta (AIP #620, New York, 2002)Google Scholar
  6. M.D. Furnish, Y.M. Gupta, J.W. Forbes (eds.), Shock Compression of Condensed Matter-2003, Portland (AIP #706, New York, 2004)Google Scholar
  7. M.D. Furnish, M. Elert, T.P. Russell, C.T. White (eds.), Shock Compression of Condensed Matter – 2003, Baltimore (AIP #845, New York, 2006)Google Scholar
  8. Y.M. Gupta (ed.), Shock Waves in Condensed Matter, Spokane (Plenum Press, New York, 1986)Google Scholar
  9. Y.M. Gupta ed., Shock Compression of Condensed Matter. in Proceedings of Symposium in Honor of George Duvall, Pullman, (Washington State University, Pullman), 1 Sept 1988Google Scholar
  10. W.J. Nellis, L. Seaman, R.A. Graham (eds.), Shock Waves in Condensed Matter, Menlo Park (American Institute of Physics, New York, 1982)Google Scholar
  11. S.C. Schmidt, N.C. Holmes (eds.), Shock Waves in Condensed Matter-1987, Monterey (North-Holland, Amsterdam, 1988)Google Scholar
  12. S.C. Schmidt, W.C. Tao (eds.), Shock Compression of Condensed Matter-1995, Seattle (AIP #370, New York, 1996)Google Scholar
  13. S.C. Schmidt, R.A. Graham, G.K. Straub (eds.), Shock Waves in Condensed Matter-1983, Sante Fe (North-Holland, Amsterdam, 1984)Google Scholar
  14. S.C. Schmidt, J.N. Johnson, L.W. Davison (eds.), Shock Waves in Condensed Matter-1989, Albuquerque (North-Holland, Amsterdam, 1990)Google Scholar
  15. S.C. Schmidt, R.D. Dick, J.W. Forbes, D.G. Tasker (eds.), Shock Waves in Condensed Matter-1991, Williamsburg (North-Holland, Amsterdam, 1992)Google Scholar
  16. S.C. Schmidt, J.W. Shaner, G.A. Samara, M. Ross (eds.), High-Pressure Science and Technology-1993, Colorado Springs (AIP #309, New York, 1994)Google Scholar
  17. S.C. Schmidt, D.P. Dandekar, J.W. Forbes (eds.), Shock Compression of Condensed Matter-1997, Amherst (AIP #429, New York, 1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Energetics Technology CenterSt. CharlesUSA

Personalised recommendations