Texture Analysis for Trabecular Bone X-Ray Images Using Anisotropic Morlet Wavelet and Rényi Entropy
Conference paper
Abstract
In this paper, we propose a new method based on texture analysis for the early diagnosis of bone disease such as osteoporosis. Our proposed method is based on a combination of four methods. First, bone X-ray images are enhanced using the algorithm of Retinex. Then, the enhanced images are analyzed using the fully anisotropic Morlet wavelet. This step is followed by the quantification of the anisotropy of the images using the Rényi entropy. Finally, the Rényi entropies are used as entries for a neural network. Applied on two different populations composed of osteoporotic (OP) patients and control (CT) subjects, a classification rate of 95% is achieved which provides a good discrimination between OP patients and CT subjects.
Keywords
Texture Analysis Receiver Operating Characteristic Curve Local Binary Pattern Area Under Curve Morlet Wavelet
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full conference paper text
References
- 1.Johnell, O.: The socioeconomic burden of fractures: today and in the 21st century. Am. J. Med. 103(2A), 20–25 (1997)CrossRefGoogle Scholar
- 2.Cooper, C., Campion, G., Melton 3rd, L.J.: Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 2(6), 285–289 (1992)CrossRefGoogle Scholar
- 3.Dempster, D.W.: The contribution of trabecular architecture to cancellous bone quality. J. Bone Miner. Res. 15(1), 20–23 (2000)CrossRefGoogle Scholar
- 4.Sevestre-Ghalila, S., Benazza-Benyahia, A., Ricordeau, A., Mellouli, N., Chappard, C., Benhamou, C.L.: Texture Image Analysis for Osteoporosis Detection with Morphological Tools. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 87–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 5.Tuceryan, M., Jain, A.K.: Texture analysis, in the handbook of pattern recognition and computer vision, 2nd edn. (1998)Google Scholar
- 6.Petrou, M., Sevilla, P.G.: Image processing: Dealing with texture (2006)Google Scholar
- 7.Benhamou, C.L., Poupon, S., Lespessailles, E., Loiseau, S., Jennane, R., Siroux, V., Ohley, W., Pothuaud, L.: Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J. Bone Miner. Res. 16(4), 697–704 (2001)CrossRefGoogle Scholar
- 8.Jennane, R., Ohley, W.J., Majumdar, S., Lemineur, G.: Fractal analysis of bone x-ray tomographic microscopy projections. IEEE Trans. Med. Imaging 20(5), 443–449 (2001)CrossRefGoogle Scholar
- 9.Pothuaud, L., Lespessailles, E., Harba, R., Jennane, R., Royant, V., Eynard, E., Benhamou, C.L.: Fractal Analysis of Trabecular Bone Texture on Radiographs: Discriminant Value in Postmenopausal Osteoporosis. Osteoporosis International 8, 618–625 (1998)CrossRefGoogle Scholar
- 10.Houam, L., Hafiane, A., Jennane, R., Boukrouche, A., Lespessailles, E.: Trabecular Bone Anisotropy Characterization Using 1D Local Binary Patterns. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part I. LNCS, vol. 6474, pp. 105–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 11.Pramudito, J.T., Soegijoko, S., Mengko, T.R., Muchtadi, F.I., Wachjudi, R.G.: Trabecular pattern analysis of proximal femur radiographs for osteoporosis detection. Journal of Biomedical and Pharmaceutical Engineering 1(1), 45–51 (2007)Google Scholar
- 12.Gabarda, S., Cristóbal, G., Rodríguez, P., Miravet, C., Del Cura, J.M.: A new Rényi entropy-based local image descriptor for object recognition. Society of Photo-Optical Instrumentation Engineers, vol. 7723 (2010)Google Scholar
- 13.Land, E.H., Mccann, J.J.: Lightness and Retinex Theory. Journal of the Optical Society of America 61, 1–11 (1971)CrossRefGoogle Scholar
- 14.Funt, B., Ciurea, F., McCann, J.: Retinex in matlab. Journal of Electronic Imaging 13(1), 48 (2004)CrossRefGoogle Scholar
- 15.Goupillaud, P., Grossmann, A., Morlet, J.: Cycle-octave and related transforms in seismic signal analysis. Geoexploration (former title) 23(1), 85–102 (1984)CrossRefGoogle Scholar
- 16.Antoine, J.P., Carrette, P., Murenzi, R., Piette, B.: Image analysis with two-dimensional continuous wavelet transform. Signal Processing 31(3), 241–272 (1993)MATHCrossRefGoogle Scholar
- 17.Kumar, P.: A wavelet based methodology for scale-space anisotropic analysis. Geophysical Research Letters 22(20), 2777–2780 (1995)CrossRefGoogle Scholar
- 18.Neupauer, R., Powell, K.: A fully-anisotropic morlet wavelet to identify dominant orientations in a porous medium. Computers and Geosciences 31(4), 465–471 (2005)CrossRefGoogle Scholar
- 19.Sahoo, P.: A thresholding method based on two-dimensional renyis entropy. Pattern Recognition 37(6), 1149–1161 (2004)MathSciNetMATHCrossRefGoogle Scholar
- 20.Rényi, A.: On Measures Of Entropy And Information. In: Proc of the 4th Berkeley Symp. on Math., Stat. and Prob., pp. 547–561 (1960)Google Scholar
- 21.Fawcett, T.: An introduction to roc analysis. Pattern Recogn. Lett. 27, 861–874 (2006)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012