3D Face Recognition Using an Expression Insensitive Dynamic Mask

  • Sadegh Salahshoor
  • Karim Faez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

Human face recognition is one of the most popular biometric approaches. In last decade 3D face recognition attracted much attention. In this paper, we present an automatic face recognition algorithm and demonstrate its performance on the Bosphorus 3D face database. A novel Dynamic mask is used to segment automatically the regions of face which are less sensitive to expressions. We applied a multilayer perceptron (MLP) to compute maskable region (MR). MR shows which percentage of face image pixels must be masked to produce the expression insensitive binary mask for 3D faces. We applied a modified nearest neighbor classifier for identification. We only used one neutral frontal face of each subject as gallery images and tested our algorithm with emotional expression images. The identification rate obtained is 85.36 percent in non-neutral expression.

Keywords

Biometrics 3D Face Recognition Facial Expression 

References

  1. 1.
    Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D Face Recognition: A survey. Pattern Recognition Letters, 1885–1906 (2007)Google Scholar
  2. 2.
    Bowyer, K., Chang, K., Flynn, P.: A Survey of approaches and challenges in 3D and multi-model 3D + 2D face recognition. In: CVIU, vol. 101, pp. 1–15 (2006)Google Scholar
  3. 3.
    Chau, C.S., Han, F., Ho, Y.K.: 3D human face recognition using point signature. Automatic Face and Geusture Recognition, 233—238 (2000)Google Scholar
  4. 4.
    Zhong, C., Sun, Z., Tan, T.: Robust 3D face recognition using learnd visual codebook. Pattern Recognition, 1–6 (2007)Google Scholar
  5. 5.
    Queirolo, C.C., Silva, L., Bellon, O.R.P., Segundo, M.P.: 3D face recognition simulated annealing and the surface interpenetration measure. IEEE Transaction, Pattern Analysis and Machine Intelligence 32(2), 206–219 (2010)CrossRefGoogle Scholar
  6. 6.
    Xu, C., Li, S., Tan, T., Quan, L.: Automatic 3D face recognition from depth and intensity Gabor features. Pattern Recognition 42, 1895–1905 (2009)MATHCrossRefGoogle Scholar
  7. 7.
    Mian, A.S., Bennamoun, M., Owens, R.: An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transaction, Pattern Analysis and Machine Intelligence 29(11), 1927–1943 (2007)CrossRefGoogle Scholar
  8. 8.
    Besl, P.J., Mckay, N.D.: A method for registration of 3D shapes. IEEE Transaction, Pattern Analysis and Machine Intelligence 14, 39–256 (1992)CrossRefGoogle Scholar
  9. 9.
    Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Bosphorus Database for 3D Face Analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BIOID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)Google Scholar
  11. 11.
    Xu, C., Wang, Y., Tan, T., Quan, L.: A new attempt to face recognition using 3D-eigenfaces. In: The 6th Asian Conference on Computer Vision (ACCV), vol. 2, pp. 884–889 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sadegh Salahshoor
    • 1
  • Karim Faez
    • 1
  1. 1.E.E. Dept. Electrical EngineeringAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations