A Phase Congruency Based Document Binarization

  • Hossein Ziaei Nafchi
  • Hamidreza Rashidy Kanan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7340)

Abstract

In this paper, three new methods proposed for binarization of degraded documents and manuscripts. Phase congruency used to select regions of interest (ROI) of document’s foreground. The main idea is to achieve an optimal recall measure (recall~1), while the precision value is at an acceptable level. Further processing should be performed to focus on the ROI. We also used a modified adaptive thresholding method in the next step. This method uses a global variance, a global mean and local means for thresholding. Finally, a new method called early exclusion criterion (EEC) proposed for document enhancement. The experimental results on the datasets introduced in DIBCO 2009, H-DIBCO 2010 and DIBCO 2011 shows that near optimal recall value (recall~0.99) obtained, while precision measure’s value is acceptable.

Keywords

Degraded document binarization Phase congruency Adaptive thresholding Early exclusion criterion 

References

  1. 1.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Systems, Man, and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kovesi, P.: Image Features from Phase Congruency. Videre: Journal of Computer Vision Research 1(3) (1999)Google Scholar
  3. 3.
    Soille, P.: Morphological Image Analysis, Principles and Applications. Springer (2007)Google Scholar
  4. 4.
    Sauvola, J., Pietikainen, M.: Adaptive binary image binarization. Pattern Recognition 33(2), 225–236 (2000)CrossRefGoogle Scholar
  5. 5.
    Shafiat, F., Keysers, D., Breuel, T.M.: Efficient Implementation of Local Adaptive Thresholding Techniques Using Integral Images. Document Recognition and Retrieval XV (2008)Google Scholar
  6. 6.
    Wellner, P.D.: Adaptive thresholding for the digitaldesk. Tech. Rep. EPC-110 (1993)Google Scholar
  7. 7.
    Bradley, D., Roth, G.: Adaptive thresholding using the integral image. Journal of Graphic Tools 12(2), 13–21 (2007)CrossRefGoogle Scholar
  8. 8.
    Niblack, W.: An Introduction to Image Processing. Prentice-Hall Press (1986)Google Scholar
  9. 9.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recognition 39(3), 317–327 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Moghaddam, R.F., Cheriet, M.: AdOtsu: An adaptive and parameterless generalization of Otsu’s method for document image binarization. Pattern Recognition 45, 2419–2431 (2012)CrossRefGoogle Scholar
  11. 11.
    Moghaddam, R.F., Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognition 43(6), 2186–2198 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Hedjam, R., Moghaddam, R.F., Cheriet, M.: A spatially adaptive statistical method for the binarization of historical manuscripts and degraded document images. Pattern Recognition 44(9), 2184–2196 (2011)CrossRefGoogle Scholar
  13. 13.
    Liu, C.: A Bayesian discriminating features method for face detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(6), 725–740 (2003)CrossRefGoogle Scholar
  14. 14.
    Trier, O., Taxt, T.: Evaluation of binarization methods for document images. IEEE Trans. on Pattern Analysis and Machine Intelligence 17, 312–315 (1995)CrossRefGoogle Scholar
  15. 15.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  16. 16.
    Gatos, B., Ntirogiannis, K.: ICDAR 2009 document image binarization contest (DIBCO 2009). In: International Conference on Document Analysis and Recognition (ICDAR), pp. 1375–1382 (2009)Google Scholar
  17. 17.
    Viola, P., Jones, M.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  18. 18.
    Moghaddam, R.F., Cheriet, M.: Beyond pixels and regions: A non-local patch means (NLPM) method for content-level restoration, enhancement, and reconstruction of degraded document images. Pattern Recognition 44(2), 730–743 (2011)CrossRefGoogle Scholar
  19. 19.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Improved document image binarization by using a combination of multiple binarization techniques and adapted edge information. In: International Conference on Pattern Recognition, pp. 1–4 (2008)Google Scholar
  20. 20.
    Pratikakis, I., Gatos, B., Ntirogiannis, K.: H-DIBCO 2010 – Handwritten Document Image Binarization Competition. In: International Conference on Frontiers in Handwritten Recognition, pp. 727–732 (2010)Google Scholar
  21. 21.
    Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2011 Document Image Binarization Contest (DIBCO 2011). In: International Conference on Document Analysis and Recognition, pp. 1506–1510 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hossein Ziaei Nafchi
    • 1
  • Hamidreza Rashidy Kanan
    • 2
  1. 1.Department of Electrical, Computer and IT Engineering, Qazvin BranchIslamic Azad UniversityQazvinIran
  2. 2.Department of Electrical EngineeringBu-Ali Sina UniversityHamedanIran

Personalised recommendations