Improving the Multiple Alignments Strategy for Fingerprint Verification

  • Miguel Angel Medina-Pérez
  • Milton García-Borroto
  • Andres Eduardo Gutierrez-Rodríguez
  • Leopoldo Altamirano-Robles
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)

Abstract

Developing accurate fingerprint verification algorithms is an active research area. A large amount of fingerprint verification algorithms are based on minutiae descriptors. An important component of these algorithms is the alignment strategy. The single alignment strategy, with O(n 2) time complexity, uses the local matching minutiae pair that maximizes the similarity value to align the minutiae. Nevertheless, even if the selected minutiae pair is a true matching pair, it is not necessarily the best pair to carry out fingerprint alignment. The multiple alignments strategy alleviates these limitations by performing multiple minutiae alignments, increasing the time complexity to O(n 4). In this paper, we improve the multiple alignment strategy, reducing its complexity while still achieving a high accuracy. The new strategy is based on the rationale that most minutiae descriptors from one fingerprint correspond with their most similar descriptors from the other fingerprint. To test the new strategy behavior, we adapt three well known algorithms to a traditional multiple alignment strategy and to our strategy. Several experiments in the FVC2004 database show that our strategy outperforms both the single and the multiple alignments strategies.

Keywords

biometrics fingerprint verification minutiae descriptor 

References

  1. 1.
    Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(12), 2128–2141 (2010)CrossRefGoogle Scholar
  2. 2.
    Cappelli, R., Maio, D., Maltoni, D., Wayman, J.L., Jain, A.K.: Performance evaluation of fingerprint verification systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(1), 3–18 (2006)CrossRefGoogle Scholar
  3. 3.
    Feng, J., Ouyang, Z., Cai, A.: Fingerprint matching using ridges. Pattern Recognition 39, 2131–2140 (2006)MATHCrossRefGoogle Scholar
  4. 4.
    Hu, C., Yin, J., Zhu, E., Chen, H., Li, Y.: Fingerprint alignment using special ridges. In: 19th International Conference on Pattern Recognition, Tampa, Florida, USA, pp. 1–4 (2008)Google Scholar
  5. 5.
    Jain, A.K., Feng, J.: Latent fingerprint matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 88–100 (2011)CrossRefGoogle Scholar
  6. 6.
    Jain, A.K., Feng, J., Nandakumar, K.: Fingerprint matching. Computer 43(2), 36–44 (2010)CrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Lin, H., Bolle, R.: On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 302–314 (1997)CrossRefGoogle Scholar
  8. 8.
    Jiang, X., Yau, W.Y.: Fingerprint minutiae matching based on the local and global structures. In: 15th International Conference on Pattern Recognition, Barcelona, Spain, vol. 2, pp. 1038–1041 (2000)Google Scholar
  9. 9.
    Luo, X., Tian, J., Wu, Y.: A minutiae matching algorithm in fingerprint verification. In: 15th International Conference on Pattern Recognition, Barcelona, Spain, vol. 4, pp. 833–836 (2000)Google Scholar
  10. 10.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recognition, 2nd edn. Springer, London (2009)CrossRefGoogle Scholar
  11. 11.
    Parziale, G., Niel, A.: A Fingerprint Matching Using Minutiae Triangulation. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 241–248. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Qi, J., Yang, S., Wang, Y.: Fingerprint matching combining the global orientation field with minutia. Pattern Recognition Letters 26(15), 2424–2430 (2005)CrossRefGoogle Scholar
  13. 13.
    Tan, X., Bhanu, B.: Fingerprint matching by genetic algorithms. Pattern Recognition 39(3), 465–477 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Tico, M., Kuosmanen, P.: Fingerprint matching using an orientation-based minutia descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 1009–1014 (2003)CrossRefGoogle Scholar
  15. 15.
    Tong, X., Huang, J., Tang, X., Shi, D.: Fingerprint minutiae matching using the adjacent feature vector. Pattern Recognition Letters 26, 1337–1345 (2005)CrossRefGoogle Scholar
  16. 16.
    Udupa, U.R., Garg, G., Sharma, P.: Fast and Accurate Fingerprint Verification. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 192–197. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Wang, X., Li, J., Niu, Y.: Fingerprint matching using orientationcodes and polylines. Pattern Recognition 40(11), 3164–3177 (2007)MATHCrossRefGoogle Scholar
  18. 18.
    Zheng, J.D., Gao, Y., Zhang, M.Z.: Fingerprint matching algorithm based on similar vector triangle. In: 2nd International Congress on Image and Signal Processing, CISP 2009, pp. 1–6 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miguel Angel Medina-Pérez
    • 1
    • 2
  • Milton García-Borroto
    • 1
  • Andres Eduardo Gutierrez-Rodríguez
    • 1
  • Leopoldo Altamirano-Robles
    • 2
  1. 1.Centro de BioplantasUniversidad de Ciego de ÁvilaCiego de ÁvilaCuba
  2. 2.Instituto Nacional de Astrofísica, Óptica y ElectrónicaPueblaMéxico

Personalised recommendations