Concentrated Curvature for Mean Curvature Estimation in Triangulated Surfaces

  • Mohammed Mostefa Mesmoudi
  • Leila De Floriani
  • Paola Magillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7309)

Abstract

We present a mathematical result that allows computing the discrete mean curvature of a polygonal surface from the so-called concentrated curvature generally used for Gaussian curvature estimation. Our result adds important value to concentrated curvature as a geometric and metric tool to study accurately the morphology of a surface.

Keywords

Curvature Gaussian and mean curvature Discrete curvature Triangulated surfaces 

References

  1. 1.
    Akleman, E., Chen, J.: Insight for Practical Subdivision Modeling with Discrete Gauss-Bonnet Theorem. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS, vol. 4077, pp. 287–298. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Alboul, L., Echeverria, G., Rodrigues, M.A.: Discrete curvatures and Gauss maps for polyhedral surfaces. In: European Workshop on Computational Geometry (EWCG), Eindhoven, The Netherlands, pp. 69–72 (2005)Google Scholar
  3. 3.
    Aleksandrov, P.: Topologia Combinatoria. Edizioni Scientifiche Einaudi, Torino (1957)Google Scholar
  4. 4.
    Do Carno, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall Inc., Englewood Cliffs (1976)Google Scholar
  5. 5.
    Gatzke, T.D., Grimm, C.M.: Estimating curvature on triangular meshes. International Journal on Shape Modeling 12, 1–29 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Mesmoudi, M.M., Danovaro, E., De Floriani, L., Port, U.: Surface segmentation through concentrated curvature. In: Proc. International Conference on Image and Pattern Processing, pp. 671–676, Modena, Italy (2007)Google Scholar
  7. 7.
    Mesmoudi, M.M., De Floriani, L., Port, U.: Discrete distortion in triangulated 3-manifolds. Computer Graphics Forum 27(5), 1333–1340 (2008)CrossRefGoogle Scholar
  8. 8.
    Mesmoudi, M.M., De Floriani, L., Magillo, P.: Discrete Distortion for Surface Meshes. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 652–661. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Meyer, M., Desbrun, M., Schroder, M., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.-C., Polthier, K. (eds.) Proceedings VisMath 2002, Berlin, Germany (2002)Google Scholar
  10. 10.
    Troyanov, M.: Les surfaces Euclidiennes à singularités coniques. L’Enseignement Mathématique 32, 79–94 (1986)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammed Mostefa Mesmoudi
    • 1
  • Leila De Floriani
    • 1
  • Paola Magillo
    • 1
  1. 1.Department of Computer ScienceUniversity of GenovaGenovaItaly

Personalised recommendations