Noble Gases in Ice Cores: Indicators of the Earth’s Climate History

  • Gisela WincklerEmail author
  • Jeffrey P. Severinghaus
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


Polar ice cores constitute excellent archives of past environmental conditions and provide us with glimpses into the Earth’s climatic history over hundreds of thousands of years. For the past two decades, noble gases, used as conservative tracers, have played a substantial role in extracting information from these archives. Noble gas analysis can be performed on two types of ice core samples. First, atmospheric air, trapped in bubbles in polar ice, can be extracted and analyzed for its noble gas composition. Variations in the isotopic and elemental composition of noble gases reveal changes in the composition of the paleoatmosphere or the impact of climate-related physical processes acting when the air was enclosed. For example, thermal fractionation allows for the creation of a ‘gas isotope thermometer’ in ice cores. Second, particles that were deposited on the surface snow and incorporated in the ice matrix can be analyzed for their noble gas isotope composition. These analyses reveal information about the input and origin of both terrestrial aerosols and extraterrestrial dust. The conservative nature of noble gases, ensuring that such fingerprints will be preserved over long periods of time, and the exceptionally good dating of polar ice cores make noble gas analysis of ice cores a versatile tool to study a wide spectrum of geochemical and paleoclimatic processes: from constraints on the magnitude of temperature changes during abrupt climate transitions in the Earth’s history, to determining the rate of Argon-40 degassing from the solid Earth over its history, or quantifying variations in the accretion of extraterrestrial dust on the Earth’s surface. Below, we present case studies to review some of the applications of noble gas analysis in the polar ice archive, both in trapped air bubbles and in particles incorporated in the ice matrix.


  1. Aeschbach-Hertig W, Solomon K (2012) Groundwater circulation and palaeotemperatures by noble gas geochemistry. In: Burnard P (ed) The noble gases as geochemical tracers, advances in isotope geochemistry. Springer, BerlinGoogle Scholar
  2. Albarede F (1998) Time-dependent model of U-Th-He and K-Ar evolution and the layering of mantle convection. Chem Geol 145(3–4):413–429. doi: 10.1016/S0009-2541(97)00152-6CrossRefGoogle Scholar
  3. Allegre CJ, Staudacher T, Sarda P (1987) Rare gas systematics—formation of the atmosphere, evolution and structure of the Earth’s mantle. Earth Planet Sci Lett 81:127–150Google Scholar
  4. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2009) Abrupt climate change. Science 292:2005–2010. doi: 10.1126/science.1081056CrossRefGoogle Scholar
  5. Arimoto R (2001) Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth Sci Rev 54:29–42Google Scholar
  6. Basile I, Grousset FE, Revel M, Petit J-R, Biscaye PE, Barkov NI (1997) Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet Sci Lett 146:573–589Google Scholar
  7. Bender ML, Barnett B, Dreyfus G, Jouzel J, Porcelli D (2008) The contemporary degassing rate of 40Ar from the solid earth. Proc Nat Acad Sci 105(24):8232–8237. doi: 10.1073/pnas.0711679105CrossRefGoogle Scholar
  8. Bernatowicz TJ, Kennedy BM, Podosek FA (1985) Xe in glacial ice and the atmospheric inventory of noble gases. Geochim Cosmochim Acta 49:2561–2564Google Scholar
  9. Bopp L, Kohfeld KE, Le Quere C, Aumont O (2003) Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18(2)Google Scholar
  10. Brook EJ, Kurz MD, Curtice J, Cowburn S (2000) Accretion of interplanetary dust in polar ice. Geophys Res Lett 27(19):3145–3148Google Scholar
  11. Brook EJ, Kurz MD, Curtice J (2009) Flux and size fractionation of 3He in interplanetary dust from antarctic ice core samples. Earth Planet Sci Lett 286:565–569. doi: 10.1016/j.epsl.2009.07.024CrossRefGoogle Scholar
  12. Burnard P, Zimmermann L, Sano Y (2012) The noble gases as geochemical tracers: history and background information. In: Burnard P (ed) The noble gases as geochemical tracers, advances in isotope geochemistry. Springer, BerlinGoogle Scholar
  13. Caillon N, Severinghaus JP, Barnola J-M, Chappellaz J, Jouzel J, Parrenin F (2001) Estimation of temperature change and of gas age ice age difference, 108 kyr BP, at Vostok, Antarctica. J Geohysical Res Atmos 106(D23):31893–31901 doi: 10.1029/2001JD900145Google Scholar
  14. Caillon N, Severinghaus JP, Jouzel J, Barnola J-M, Kang JC, Lipenkov VY (2003) Timing of atmospheric CO2 and Antarctic temperature change across termination III. Science 299(5613):1728–1731. doi: 10.1126/science.1078758CrossRefGoogle Scholar
  15. Chapman S, Dootson FW (1917) A note on thermal diffusion. Phil Mag 33(193–98):248–253Google Scholar
  16. Craig H, Scarsi P (1997) Helium isotope stratigraphy in the GISP2 ice core. Eos 78Google Scholar
  17. Craig H, Wiens RC (1996) Gravitational enrichment of 84Kr/36Ar ratios in polar ice caps: a measure of firn thickness and accumulation temperature. Science 271:1708–1710Google Scholar
  18. Craig H, Horibe Y, Sowers T (1988) Gravitational separation of gases and isotopes in polar ice caps. Science 242(4886):1675–1678Google Scholar
  19. Dahl-Jensen D, Gundestrup NS, Miller H, Watanabe O, Johnsen SJ, Steffensen JP, Clausen HB, Svensson A, Larsen LB (2002) The NorthGRIP deep drilling program. Ann Glaciol 35:1–4Google Scholar
  20. Delmonte B, Basile-Doelsch I, Petit J-R, Maggi V, Revel-Rolland M, Michard A, Jagoutz E, Grousset F (2004) Comparing the Epica and Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods. Earth Sci Rev 66:63–87Google Scholar
  21. Delmonte B, Petit J-R, Basile-Doelsch I, Jagoutz E, Maggi V (2007) Late quaternary interglacials in East Antarctica from ice-core dust records. In: Sirocko F, Litt T, Clausen M (eds) The climate of past interglacials. Amsterdam, pp 53–73Google Scholar
  22. Delmonte B, Delmas RJ, Petit J-R (2008) Comment on ‘‘dust provenance in Antarctic ice during glacial periods: from where in southern South America?’’ by D. M. Gaiero. Geophys Res Lett 35:L08707. doi: 10.1029/2007GL032075CrossRefGoogle Scholar
  23. Dohnanyi JS (1976) Sources of interplanetray dust: asteroids. In: Elsasser H, Fechtig H (eds) Interplanetary dust and zodiacal light, vol 48. Springer, Berlin, pp 187–206Google Scholar
  24. Dreyfus G, Jouzel J, Bender ML, Landais A, Masson-Delmotte V, Leuenberger MC (2010) Firn processes and δ15N: potential for a gas-phase climate proxy. Quat Sci Rev 29(1–2):28–42Google Scholar
  25. Du X, Wang Y, Ren J, Ye X, Lu H (2007) Helium isotope investigation on magnetic reversal boundaries of loess-paleosol sequence at Luochuan, central Chinese Loess Plateau. Chin Sci Bull 52:2407–2412Google Scholar
  26. EPICA_community_members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–628Google Scholar
  27. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206Google Scholar
  28. Farley KA (1995) Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature 376:153–156Google Scholar
  29. Farley KA, Love SG, Patterson DB (1997) Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim Cosmochim Acta 61:2309–2316Google Scholar
  30. Fischer H, Siggaard-Andersen M-L, Ruth U, Roethlisberger R, Wolff E (2007) Glacial/interglacial changes in mineral dust and sea salt records in polar ice cores: sources, transport, deposition. Rev Geophys 45:2005RG000192Google Scholar
  31. Fraundorf P, Lyons T, Schubert P (1982) The survival of solar flare tracks in interplanetary dust silicates on deceleration in the Earth’s atmosphere. J Geophys Res 87:409–412Google Scholar
  32. Grachev AM, Severinghaus JP (2003a) Determining the thermal diffusion factor for 40Ar/36Ar in air to aid paleoreconstruction of abrupt climate change. J Phys Chem A 107:4636–4642Google Scholar
  33. Grachev AM, Severinghaus JP (2003b) Laboratory determination of thermal diffusion constants for 29N2/28N2 in air at temperatures from −60 to 0 °C for reconstruction of magnitudes of abrupt climate changes using the ice core fossil-air paleothermometer. Geochim Cosmochim Acta 67:345–360Google Scholar
  34. Grootes PM, Stuiver M, White JWC, Johnsen SJ, Jouzel J (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366:552–554Google Scholar
  35. Grousset FE, Biscaye PE, Revel M, Petit J-R, Pye K, Joussaume S, Jouzel J (1992) Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: isotopic constraints on origins. Earth Planet Sci Lett 111:175–182Google Scholar
  36. Hamme RC, Emerson SR (2004) The solubility of neon, nitrogen and argon in destilled water and seawater. Deep-Sea Res 51(11):1517–1528. doi: 10.1016/j.dsr.2004.06.009CrossRefGoogle Scholar
  37. Harrison SP, Kohfeld KE, Roelandt C, Claquin T (2001) The role of dust in climate changes today, at the last glacial maximum and in the future. Earth Sci Rev 54:43–80Google Scholar
  38. Headly MA, Severinghaus JP (2007) A method to measure Kr/N2 ratios in air bubbles trapped in ice cores and its application in reconstructing past mean ocean temperature. J Geophys Res 112:D19105. doi: 10.1029/2006JD008317CrossRefGoogle Scholar
  39. Jean-Baptiste P, Petit JR, Lipenkov VY, Raynaud D, Barkov NI (2001a) Constraints on hydrothermal processes and water exchange in lake Vostok from helium isotopes. Nature 411:460–462Google Scholar
  40. Jean-Baptiste P, Petit JR, Lipenkov VY, Raynaud D, Barkov NI (2001b) Constraints on hydrothermal processes and water exchange on lake Vostok from helium isotopes. Nature 411:460–462Google Scholar
  41. Jiang W, Bailey K, Lu Z-T, Mueller P, O’Connor TP, Cheng C-F, Hu S-M, Purtschert R, Sturchio NC, Sun YR, Williams WD, Yang G-M (2012, in press) An atom counter for measuring 81Kr and 85Kr in environmental samples. Geochim Cosmochim ActaGoogle Scholar
  42. Johnsen SJ, Clausen HB, Dansgaard W, Gundestrup NS, Hammer CU, Andersen U, Andersen KK, Hvidberg CS, DahlJensen D, Steffensen JP, Shoji H, Sveinbjornsdottir AE, White JWC, Jouzel J, Fisher D (1997) The delta O-18 record along the greenland ice core project deep ice core and the problem of possible eemian climate instability. J Geophys Res 102(C12):26397–26410 doi: 10.1029/97JC00167Google Scholar
  43. Jouzel J, Alley RB, Cuffey KM, Dansgaard W, Grootes PM, Hoffmann G, Johnsen SJ, Koster RD, Peel D, Shuman CA, Stievenard M, Stuiver M, White J (1997) Validity of the temperature reconstructions from water isotopes in ice cores. J Geohysical Res 102:26471–26487Google Scholar
  44. Kaufmann PR, Federer U, Hutterli MA, Bigler M, Schuepbach S, Ruth U, Schmitt J, Stocker TF (2008) An improved continuous flow analysis system for high-resolution field measurements on ice cores. Environ Sci Technol 42:8044–8050Google Scholar
  45. Kobashi T, Severinghaus JP, Barnola J-M (2008a) 4 ± 1.5 °C abrupt warming 11,270 yr ago identified from trapped air in Greenland ice. Earth Planet Sci Lett 268:397–407. doi: 10.1016/j.epsl.2008.01.032CrossRefGoogle Scholar
  46. Kobashi T, Severinghaus JP, Kawamura K (2008b) Argon and nitrogen isotopes of trapped air in the GISP2 ice core during the holocene epoch (0–11,500 B.P.): methodology and implications for gas loss processes. Geochim Cosmochim Acta 72:4675–4686. doi: 10.1016/j.gca.2008.07.006CrossRefGoogle Scholar
  47. Kobashi T, Severinghaus JP, Barnola J-M, Kawamura K, Carter T, Nakaegawa T (2009) Persistent multi-decadal Greenland temperature fluctuation through the last millenium. Clim Change. doi: 10.1007/s10584-009-9689-9CrossRefGoogle Scholar
  48. Kurz MD, Kenna T, Lassiter J, Depaolo D (1996) Helium isotopic evolution of mauna kea volcano; first results from the 1-km drill core. J Geophys Res 101:11781–11791Google Scholar
  49. Lambert F, Delmonte B, Petit JR, Bigler M, Kaufmann PR, Hutterli MA, Stocker TF, Ruth U, Steffensen JP, Maggi V (2008) Dust-climate coupling over the past 800,000 years from the EPICA Dome C ice core. Nature 452(7187):616–619Google Scholar
  50. Landais A (2011) Stable isotopes of N and Ar as tracers to retrieve past air temperature from air trapped in ice cores. In: Barkaran M (ed) Handbook of environmental isotope geochemistry, advances in isotope geochemistry. Springer, Berlin. doi  10.1007/978-3-642-10637-8_40Google Scholar
  51. Landais A, Barnola J-M, Masson-Delmotte V, Jouzel J, Chappellaz J, Caillon N, Huber C, Leuenberger MC, Johnsen SJ (2004a) A continuous record of temperature evolution over a sequence of dansgaard-oeschger events during marine isotopic stage 4 (76–62 kyr BP). Geophys Res Lett 31:L22211. doi: 10.1029/2004GL021193CrossRefGoogle Scholar
  52. Landais A, Caillon N, Goujon C, Grachev AM, Barnola J-M, Chappellaz J, Jouzel J, Masson-Delmotte V, Leuenberger MC (2004b) Quantification of rapid temperature change during DO event 12 and phasing with methane inferred from air isotopic measurements. Earth Planet Sci Lett 225(1–2):221–232. doi: 10.1016/j.epsl.2004.06.009CrossRefGoogle Scholar
  53. Landais A, Masson-Delmotte V, Jouzel J, Raynaud D, Johnsen SJ, Huber C, Leuenberger MC, Schwander J, Minster B (2006) The glacial interception as recorded in the NorthGRIP Greenland ice core: timing, structure and associated abrupt temperature change. Clim Dyn 26:273–284. doi: 10.1007/s00382-005-0063-yCrossRefGoogle Scholar
  54. Leuenberger MC, Lang C, Schwander J (1999) Delta 15 N measurements as a calibration too for the paleothermometer and gas-ice differences: a case study for the 8,200 B.P. event on GRIP ice. J Geophys Res 104:22163–22170Google Scholar
  55. Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J-M, Raynaud D, Stocker TF, Chappellaz J (2008) Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453:383–386. doi: 10.1038/nature06950CrossRefGoogle Scholar
  56. Luethi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382. doi: 10.1038/nature06949CrossRefGoogle Scholar
  57. Marcantonio F, Kumar N, Stute M, Anderson RF, Seidl MA, Schlosser P, Mix A (1995) A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. Earth Planet Sci Lett 133:549–555Google Scholar
  58. Marcantonio F, Anderson RF, Stute M, Kumar N, Schlosser P, Mix A (1996) Extraterrestrial 3He as a tracer of marine sediment transport and accumulation. Nature 383:705–707Google Scholar
  59. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13Google Scholar
  60. McGee D, Mukhopadhyay S (2012) Extraterrestrial He in sediments: From recorder of asteroid collisions to timekeeper of global environmental changes. In: Burnard P (ed) The noble gases as geochemical tracers, advances in isotope geochemistry. Springer, BerlinGoogle Scholar
  61. McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC (1950) Improvements in mass-spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724–730Google Scholar
  62. Moore JK, doney SC, Glover DM, Fung I (2002) Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Res 49:463–507Google Scholar
  63. Mukhopadhyay S, Kreycik P (2008) Dust generation and drought paterns in Africa from helium-4 in a modern cape verde coral. Geophys Res Lett 35.  10.1029/2008GL035722
  64. Muller RA, MacDonald GJ (1995) Glacial cycles and orbital inclination. Nature 377:107–108Google Scholar
  65. Muller RA, MacDonald GJ (1997) Glacial cycling and astronomical forcing. Science 277:215–218Google Scholar
  66. NGRIP_Project_members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151Google Scholar
  67. Nier AO, Schlutter DJ (1990) Helium and neon in stratospheric particles. Meteoritics 25:263–267Google Scholar
  68. Orsi AJ, B., Cornuelle B, Severinghaus JP (2009) Magnitude and temporal evolution of interstadial 8 abrupt temperature change inferred from δ15 N and δ40Ar in GISP2 Ice using a new least-squares inversion. AGU chapman conference on abrupt climate changeGoogle Scholar
  69. Patterson DB, Farley KA (1998) Extraterrestrial 3He in seafloor sediments: evidence for correlated 100kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and quaternary climate. Geochim Cosmochim Acta 62:3669–3682Google Scholar
  70. Patterson DB, Farley KA, Schmitz B (1998) Preservation of extraterrestrial 3He in 480-Ma-old marine limestones. Earth Planet Sci Lett 163:315–325Google Scholar
  71. Patterson DB, Farley KA, Norman MD (1999) 4He as a tracer of continental dust: a 1.9 million year record of aeolian flux to the west equatorial Pacific Ocean. Geochim Cosmochim Acta 63(5):615–625Google Scholar
  72. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender ML, Chappellaz J, Davis ME, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436Google Scholar
  73. Peucker-Ehrenbrink B (1996) Accretion of extraterrestrial matter during the last 80 million years and its effect on the marine osmium isotope record. Geochim Cosmochim Acta 60:3187–3196Google Scholar
  74. Porcelli D, Wasserburg GJ (1995) Mass transfer of helium, argon, and xenon through a steady-state upper mantle. Geochim Cosmochim Acta 59(23):4921–4937. doi: 10.1016/0016-7037(95)00336-3CrossRefGoogle Scholar
  75. Revel-Rolland M, De Deckker P, Delmonte B, Hesse PP, Magee JW, Basile-Doelsch I, Grousset F, Bosch D (2006) Eastern Australia: a possible source of dust in East Antarctica interglacial ice. Earth Planet Sci Lett 249:1–13Google Scholar
  76. Schwander J (1989) The transformation of snow to ice and the occlusion of gases. In: Oeschger H, Langway CC Jr (eds) The environmental record in glaciers and ice sheets. Wiley, New York, pp 53–67Google Scholar
  77. Severinghaus JP, Battle M (2006) Fractionation of gases in polar ice during bubble close-off: new constraints from firn air Ne, Kr, and Xe observations. Earth Planet Sci Lett 244:474–500Google Scholar
  78. Severinghaus JP, Brook EJ (1999) Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice. Science 286:930–934Google Scholar
  79. Severinghaus JP, Sowers T, Brook EJ, Alley RB, Bender ML (1998) Timing of abrupt climate change at the end of the younger Dryas interval from thermally fractionated gases in polar ice. Nature 391:141–146Google Scholar
  80. Severinghaus JP, Grachev AM, Luz B, Caillon N (2003) A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochim Cosmochim Acta 67:325–343Google Scholar
  81. Severinghaus JP, Albert MR, Courville ZR, Fahnestock MA, Kawamura K, Montzka SA, Muhle J, Scambos TA, Shields E, Shuman CA, Suwa M, Tans P, Weiss RF (2010) Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth Planet Sci Lett 293(3–4):359–367. doi: 10.1016/j.epsl.2010.03.003CrossRefGoogle Scholar
  82. Sowers T, Bender ML, Raynaud D (1989) Elemental and isotopic composition of occluded O-2 and N-2 in polar ice. J Geophys Res: Atmos 94(D4):5137–5150. doi: 10.1029/JD094iD04p05137Google Scholar
  83. Takayanagi M, Ozima M (1987) Temporal variation of 3He/4He ratio recorded in deep-sea sediment cores. J Geophys Res 92:12531–12538Google Scholar
  84. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  85. Watson AJ, Bakker DCE, Ridgwell AJ, Boyd PW, Law CS (2000) Effect of iron supply on southern ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407(6805):730–733Google Scholar
  86. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735Google Scholar
  87. Weiss RF, Kyser TK (1978) Solubility of krypton in water and seawater. J Chem Eng Data 23:69–72Google Scholar
  88. Winckler G, Fischer H (2006) 30,000 years of cosmic dust in Antarctic ice. Science 313:491Google Scholar
  89. Winckler G, Anderson RF, Schlosser P (2005) Equatorial Pacific productivity and dust flux during the mid-pleistocene climate transition. Paleoceanography 20(4):PA4025, 4010. 1029/2005PA001177 doi: 10.1029/2005PA001177Google Scholar
  90. Winckler G, Anderson RF, Fleisher MQ, McGee D, Mahowald NM (2008) Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320:93–96. doi: 10.1126/science.1150595CrossRefGoogle Scholar
  91. Wood D, Caputi R (1966) Solubilities of Kr and Xe in fresh and seawater. In: Tech Rep USNRDL-TR-988, vol. U.S. Nav. Radiol. Def. Lab, San Francisco, CaliforniaGoogle Scholar
  92. Zhang YX, Zindler A (1989) Noble gas constraints on the evolution of the earth’s atmosphere. J Geophys Res: Solid Earth 94(B10):13719–13737. doi: 10.1029/JB094IB10p13719Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  2. 2.Department of Earth and Environmental SciencesColumbia UniversityNew YorkUSA
  3. 3.Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations