Advertisement

Modelling Tephra Thickness and Particle Size Distribution of the 1913 Eruption of Volcán de Colima, Mexico

  • C. B. ConnorEmail author
  • L. J. Connor
  • C. Bonadonna
  • J. Luhr
  • I. Savov
  • C. Navarro-Ochoa
Chapter
Part of the Active Volcanoes of the World book series (AVOLCAN)

Abstract

A crucial problem at most volcanoes is reconstructing past eruptions from the geological record. The rapid erosion of many volcanic terrains results in geologically recent eruptions leaving a relatively sparse record of the event. Here we consider the tephra-stratigraphic record of the 1913 eruption of Volcán de Colima, a recent but greatly eroded tephra fallout deposit. A total of 38 stratigraphic sections of the 1913 deposit have been analysed for thickness, granulometry and geochemistry. The 1913 scoria are hornblende and two-pyroxene andesites with approximately 58 wt% SiO2, providing a geochemical and petrographic signature that is distinct from earlier (1818) and later tephra fallout deposits. Tephra2, a tephra dispersion computer code based on the advection-diffusion equation, is used to model thickness variation and particle size distribution of the pyroclasts for the 1913 deposit. Based on computer simulations, the observed tephra stratigraphy is best fit with a total eruption mass of ~5.5 × 1010 kg. Computer simulations including reports of tephra accumulation from the historical record produces an alternative deposit model with a finer median particle size (~1.77 ϕ), a higher eruption column (~25 km above mean sea level, amsl), and a greater total eruption mass (~1.4 × 1011 kg). This larger eruption magnitude is supported by modelling the granulometry of the 38 stratigraphic sections. The models suggest a median deposit particle size of at least 2ϕ, a deposit mass of 1–5 × 1011 kg (VEI 4), and that significant segregation by particle size as a function of height occurred in the 1913 eruption column. This analysis highlights potential bias in eruption magnitude estimates that use only thickness of proximal deposits, and the advantage of modelling the granulometry of the deposit in such circumstances.

Keywords

Tephra Fallout model Numerical model Advection-diffusion equation Tephra stratigraphy Volatile content Volcanic eruption Volcán de Colima Eruption volume 

References

  1. Alfano, F., Bonadonna, C., Delmelle, P., Costantini, L.: Insights into tephra settling velocity from morpholog ical observations. J. Volcanol. Geoth. Res. 208, 86–98 (2011a)CrossRefGoogle Scholar
  2. Alfano, F., Bonadonna, C., Volentik, A.C., Connor, C.B., Watt, S.F., Pyle, D.M., Connor, L.J.: Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption. Chile. Bull. Volcanol. 73(5), 613–630 (2011b)CrossRefGoogle Scholar
  3. Armienti, P., Macedonio, G., Pareschi, M.T.: A numerical-model for simulation of tephra transport and deposition—applications to May 18, 1980, Mount-St-Helens eruption. J. Geophys. Res. 93, 6463–6476 (1988)CrossRefGoogle Scholar
  4. Barsotti, S., Neri, A., Scire, J. S.: The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation. J. Geophys. Res. 113(B03209) (2008).  https://doi.org/10.1029/2006jb004623
  5. Bonadonna, C., Cioni, A., Pistolesi, M., Connor, C., Scollo, S., Pioli, L., Rosi, M.: Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull. Volcanol. 75 (2013).  https://doi.org/10.1007/s00445-012-0680-3
  6. Bonadonna, C., Connor, C., Houghton, B., Connor, L.J., Byrne, M., Laing, A., Hincks, T.: Probabilistic modelling of tephra-fall dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J. Geophys. Res. 110, B03203 (2005).  https://doi.org/10.1029/2003JB002896CrossRefGoogle Scholar
  7. Bonadonna, C., Costa, A.: Estimating the volume of tephra deposits: a new simple strategy. Geology 40, 415–418 (2012)CrossRefGoogle Scholar
  8. Bonadonna, C., Costa, A.: Plume height, volume and classification of volcanic eruptions based on the Weibull function. Bull. Volcanol. 75(8) (2013)Google Scholar
  9. Bonadonna, C., Biass, S., Costa, A.: Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J. Volcanol. Geoth. Res. (2015)Google Scholar
  10. Bonadonna, C., Ernst, G.G.J., Sparks, R.S.J.: Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J. Volcanol. Geoth. Res. 81, 173–187 (1998)CrossRefGoogle Scholar
  11. Bonadonna, C., Houghton, B.F.: Total grain-size distribution and volume of tephra-fall deposits. Bull. Volc. 67, 441–456 (2005)CrossRefGoogle Scholar
  12. Bonadonna, C., Phillips, J.C.: Sedimentation from strong volcanic plumes. J. Geophys. Res. 108 (2003).  https://doi.org/10.1029/2002jb002034
  13. Bonasia, R., Capra, L.A., Costa, A., Macedonio, G., Saucedo, R.: Tephra fallout hazard assessment for a plinian eruption scenario at Volcán de Colima (Mexico). J. Volcanol. Geoth. Res. 203(1), 12–22 (2011)CrossRefGoogle Scholar
  14. Bretón-Gonzalez, M., Ramirez, J.J., Navarro, C.: Summary of the historical eruptive activity of Volcán de Colima, Mexico 1519-2000. J. Volcanol. Geoth. Res. 117, 21–46 (2002)CrossRefGoogle Scholar
  15. Burden, R.E., Phillips, J.C., Hincks, T.K.: Estimating volcanic plume heights from depositional clast size. J. Geophys. Res. 116, B11206 (2011).  https://doi.org/10.1029/2011JB008548CrossRefGoogle Scholar
  16. Burden, R.E., Chen, L., Phillips, J.C.: A statistical method for determining the volume of volcanic fall deposits. Bul. Volcanol. 75(6) (2013)Google Scholar
  17. Bursik, M.I., Carey, S.N., Sparks, R.S.J.: A gravity current model for the May 18 1980 Mount-St-Helens plume. Geophys. Res. Lett. 19, 1663–1666 (1992)CrossRefGoogle Scholar
  18. Carey, S.N., Sparks, R.S.J.: Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull. Volc. 48, 109–125 (1986)CrossRefGoogle Scholar
  19. Carmichael, I.S.E., Frey, H.M., Lange, R.A., Hall, C.M.: The Pleistocene cinder cones surrounding Volcan Colima, Mexico re-visited: eruption ages and volumes, oxidation states, and sulfur content. Bull. Volc. 68, 407–419 (2006)CrossRefGoogle Scholar
  20. Carmichael, I.S.E.: The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contribuitons Miner. Petrol. 143, 641–663 (2002)CrossRefGoogle Scholar
  21. Connor, C.B., Hill, B., Winfrey, B., Franklin, N., LaFemina, P.: Estimation of volcanic hazards from tephra fallout. Nat. Hazards. Rev. 2, 33–42 (2001)CrossRefGoogle Scholar
  22. Connor, L.J., Connor, C.B.: Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader, H., Coles, S.C., Connor, C.B., Connor, L.J. (eds.) Statistics in Volcanology, pp. 231–242. Geological Society, London (2006)CrossRefGoogle Scholar
  23. De la Cruz-Reyna, D., Martin Del Pozzo, A.L.: The 1982 eruption of El Chichón volcano, Mexico: eyewitness of the disaster. Geofísica Int. 48(1), 21–31 (2009)Google Scholar
  24. Dufek, J., Manga, M., Patel, A.: Granular disruption during explosive volcanic eruptions. Nat. Geosci. (2012)Google Scholar
  25. Engwell, S.L., Sparks, R.S.J., Aspinall, W.P.: Quantifying uncertainties in the measurement of tephra fall thickness. J. Appl. Volcanol. 2(1), 1–12 (2013)CrossRefGoogle Scholar
  26. Ernst, G.G., Bursik, M.I., Carey, S.N., Sparks, R.S.J.: Sedimentation from turbulent jets and plumes. J. Geophys. Res. 101, 5575–5589 (1996)CrossRefGoogle Scholar
  27. Fagents, S.A., Wilson, L.: Explosive volcanic eruptions: VII. The ranges of pyroclasts ejected in transient volcanic explosions. Geophys. J. Int. 113, 359–370 (1993)CrossRefGoogle Scholar
  28. Fierstein, J., Nathenson, M.: Another look at the calculation of fallout tephra volumes. Bull. Volc. 54, 156–167 (1992)CrossRefGoogle Scholar
  29. Fisher, R.V., Schmincke, H.-U.: Pyroclastic Rocks. Springer 1984Google Scholar
  30. Folch, A., Costa, A., Macedonio, G.: FALL3D: a computational model for transport and deposition of volcanic ash. Comput. Geosci. 35, 1334–1342 (2009)CrossRefGoogle Scholar
  31. Housh, T.B., Luhr, J.F.: Plagioclase-melt equilibria in hydrous systems. Am. Miner. 76, 477–492 (1991)Google Scholar
  32. Hurst, A.W., Turner, R.: Performance of the program ASHFALL for forecasting ashfall during the 1995 and 1996 eruptions of Ruapehu volcano, New Zealand. J. Geol. Geophys 42, 615–622 (1999)CrossRefGoogle Scholar
  33. Inman, D.L.: Measures for describing the size distribution of sediments. J. Sediment. Petrol. 22, 125–145 (1952)Google Scholar
  34. Jones, A., Thomson, D., Hort, M., Devenish, B.: The U.K. Met Office’s next-generation atmospheric dispersion model, NAME III. In: Borrego, C., Norman, A.-L. (eds.) Air Pollution Modelling and Its Application XVII, pages 580–589. Springer (2007)Google Scholar
  35. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., et al.: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 77(3), 437–471 (1996)CrossRefGoogle Scholar
  36. Kelemen, P.B., Hanghoj, K., Greene, A.R.: One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust. In: Holland, H.D., Turekian, K.K. (eds.) Treaties in Geochemistry, pp. 593–659. Elsevier-Pergamon, Oxford (2003)Google Scholar
  37. Klawonn, M., Houghton, B.F., Swanson, D.A., Fagents, S.A., Wessel, P., Wolfe, C.J.: From field data to volumes: constraining uncertainties in pyroclastic eruption parameters. Bull. Volcanol. 76(7) (2014)Google Scholar
  38. Komorowski, J.C., Navarro, C., Cortes, A., Saucedo, R., Gavilanes, J.C., Siebe, C., Espindola, J.M., Rodriguez, S.: The Colima volcanic complex: part I: quaternary multiple debris-avalanche deposits, part II: historical pyroclastic sequences (1913, 1991, 1994). Fieldtrip Guidebook Excursion No. 3, IAVCEI General Assembly, Puerto Vallarta, Mexico (1997)Google Scholar
  39. Kunii, D., Levenspiel, O.: Fluidization Engineering. Wiley, New York (1969)Google Scholar
  40. Le Bas, M., Le Maitre, R.W., Woolley, A.R.: The construction of the total Alkali-Silica chemical classification of the volcanic rocks. Mineral. Petrol. 46(1), 1–22 (1986)CrossRefGoogle Scholar
  41. Lim, L.L., Sweatman, W.L., McKibben, R., Connor, C.B.: Tephra fallout models: the effect of different source shapes on isomass maps. Math. Geosci. 40, 147–157 (2008)CrossRefGoogle Scholar
  42. Longchamp, C., Bonadonna, C., Bachmann, O., Skopelitis, A.: Characterization of tephra deposits with limited exposure: the example of the two largest explosive eruptions at Nisyros volcano (Greece). Bull. Volc. 73(9), 1337–1352 (2011)CrossRefGoogle Scholar
  43. Luhr, J.F., Carmichael, I.S.E.: Petrological monitoring of cyclical eruptive activity at Volcán Colima, México. J. Volcanol. Geoth. Res. 42, 235–260 (1990)CrossRefGoogle Scholar
  44. Luhr, J.F., Navaro, C., Savov, I.P.: Tephrochronology, petrology and geochemistry of Late-Holocene pyroclastic deposits from Volcán Colima, México. J. Volcanol. Geoth. Res. 197, 1–32 (2010)CrossRefGoogle Scholar
  45. Luhr, J.F., Navarro, C., Connor, C.B., Connor, L.J.: The 1913 VEI–4 Plinian eruption of Volcán Colima, México: Tephrochronology, petrology, and plume modelling. Eos, Transactions of the American Geophysical Union, vol. 52, pp. V43B–1786. San Franscico, CA (2006)Google Scholar
  46. Luhr, J.F.: Petrology and geochemistry of the 1991 and 1998-1999 lava flows from Volcán Colima, México. J. Volcanol. Geoth. Res. 117, 169–194 (2002)CrossRefGoogle Scholar
  47. Macedonio, G., Costa, A., Longo, A.: A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845 (2005)CrossRefGoogle Scholar
  48. Magill, C., Mannen, K., Connor, L., Bonadonna, C., Connor, C.: Simulating a multi-phase tephra fall event: inversion modelling for the 1707 Hoei eruption of Mount Fuji. Japan. Bull. Volcanol. 77(9), 81 (2015)CrossRefGoogle Scholar
  49. Mannen, K.: Particle segregation of an eruption plume as revealed by a comprehensive analysis of tephra dispersal: theory and application. J. Volcanol. Geoth. Res. 284, 61–78 (2014)CrossRefGoogle Scholar
  50. Maria, A., Luhr, J.F.: Lamprophyres, basanites, and basalts of the western Mexican Volcanic Belt: Volatile contents and a vein—wallrock melting relationship. J. Petrol. 49, 2123–2156 (2008)CrossRefGoogle Scholar
  51. Nedler, J.A., Meade, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)CrossRefGoogle Scholar
  52. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press (1992)Google Scholar
  53. Putirka, K.D.: Igneous thermometers and barometers based on plagioclase + liquid equilibria; tests of some existing models and new calibrations. Am. Miner. 98, 336–346 (2005)CrossRefGoogle Scholar
  54. Putirka, K.D.: Thermometers and barometers for volcanic systems. In: Putirka, K., Tepley, F.J. (eds.) Minerals, Inclusions and Volcanic Processes. Rev. Mineral. Geochem. 69, 61–120 (2008)Google Scholar
  55. Pyle, D.M.: The thickness, volume and grainsize of tephra fall deposits. Bull. Volc. 51, 1–15 (1989)CrossRefGoogle Scholar
  56. Robin, C., Camus, G., Gourgaud, A.: Eruptive and magmatic cycles at Fuego de Colima volcano (Mexico). J. Volcanol. Geoth. Res. 45, 209–225 (1991)CrossRefGoogle Scholar
  57. Rose, W.I., Durant, A.J.: Fine ash content of explosive eruptions. J. Volcanol. Geoth. Res. 186(1), 32–39 (2009)CrossRefGoogle Scholar
  58. Saucedo-Girón, R.: Reconstrucción de la última erupción explosiva del Volcán de Colima en 1913. Master’s Thesis, Instituto de Geofsica, Universidad Nacional Autónoma de México, vol. 85 (1997)Google Scholar
  59. Saucedo, R., Macas, J.L., Gavilanes, J.C., Arce, J.L., Komorowski, J.C., Gardner, J.E., Valdez-Moreno, G.: corrigendum to Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 plinian eruption of Volcan de Colima, Mexico. [J. Volcanol. Geoth. Res. 191 149–166 (2010)] J. Volcanol. Geoth. Res. 207, 67 (2011)CrossRefGoogle Scholar
  60. Saucedo, R., Macias, J.L., Gavilanes, J.C., Arce, J.L., Komorowski, J.-C., Gardner, J., Valdez-Moreno, G.: Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 plinian eruption of Volcán de Colima, Mexico. J. Volcanol. Geoth. Res. 191, 149–166 (2010)CrossRefGoogle Scholar
  61. Savov, I.P., Luhr, J.F., Navarro-Ochoa, C.: Petrology and geochemistry of lava and ash erupted from Volcán Colima, Mexico, during 1998–2005. J. Volcanol. Geoth. Res. 174, 241–256 (2008)CrossRefGoogle Scholar
  62. Scollo, S., Tarantola, S., Bonadonna, C., Coltelli, M., Saltelli, A.: Sensitivity analysis and uncertainty estimation for tephra dispersal models. J. Geophys. Res. 113, 1–17 (2008)CrossRefGoogle Scholar
  63. Searcy, C., Dean, K., Stringer, W.: PUFF: a high-resolution volcanic ash tracking model. J. Volcanol. Geoth. Res. 80, 1–16 (1998)CrossRefGoogle Scholar
  64. Solikhin, A., Thouret, J.C., Liew, S.C., Gupta, A., Sayudi, D.S., Oehler, J.F., Kassouk, Z.: High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi Volcano eruption and their impact. Bull. Volc. 77(3), 20 (2015)CrossRefGoogle Scholar
  65. Sparks, R.S.J., Bursik, M.I., Ablay, G.J., Thomas, R.M.E., Carey, S.: Sedimentation of tephra by volcanic plumes: 2. Controls on thickness and grain-size variations of tephra fall deposits. Bull. Volc. 54, 685–695 (1992)CrossRefGoogle Scholar
  66. Sparks, R.S.J., Bursik, M.I., Carey, S.N., Gilbert, J.S., Glaze, L.S., Sigurdsson, H., Woods, A.W.: Volcanic Plumes. Wiley, Chichester, UK (1997)Google Scholar
  67. Sparks, R.S.J.: The dimensions and dynamics of volcanic eruption columns. Bull. Volc. 48, 3–15 (1986)CrossRefGoogle Scholar
  68. Suzuki, T.: A theoretical model for dispersion of tephra. In: Shimozuru, D., Yokoyama, I. (eds.) Arc Volcanism, Physics and Tectonics, pages 95–113. Terra Scientific Publishing Company (TERRAPUB), Tokyo (1983)Google Scholar
  69. Volentik, A.C.M., Bonadonna, C., Connor, C.B., Connor, L.J., Rosi, M.: Modelling tephra dispersal in absence of wind: insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador). J. Volcanol. Geoth. Res. 193, 117–136 (2010)CrossRefGoogle Scholar
  70. Waitz, P.: El estado actual de los volcanes de México y la ultima erupción del Volcán de Colima (1913). Revista Volcanológica, pp. 259–268 (1915)Google Scholar
  71. Waitz, P.: Datos historicos y bibliograficos acerca del Volc an de Colima. Mem. Soc. Cient. Antonio Alzate (México) 53, 349–384 (1935)Google Scholar
  72. Wells, P.R.A.: Pyroxene thermometry in simple and complex systems. Contrib. Miner. Petrol. 62, 129–139 (1977)CrossRefGoogle Scholar
  73. White, J.T., Connor, C.B., Connor, L., Hasenaka, T.: Efficient inversion and uncertainty quantification of a tephra fallout model. J. Geophys. Res.: Solid Earth 122(1), 281–294 (2017)CrossRefGoogle Scholar
  74. Woods, A.W.: The dynamics of explosive volcanic eruptions. Rev. Geophys. 33, 495–530 (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • C. B. Connor
    • 1
    Email author
  • L. J. Connor
    • 1
  • C. Bonadonna
    • 2
  • J. Luhr
    • 3
  • I. Savov
    • 4
  • C. Navarro-Ochoa
    • 5
  1. 1.University of South FloridaTampaUSA
  2. 2.Département des Sciences de la TerreUniversité de GenèveGenevaSwitzerland
  3. 3.Department of Mineral SciencesSmithsonian InstitutionWashingtonUSA
  4. 4.School of Earth and EnvironmentThe University of LeedsLeedsUK
  5. 5.Colima Volcano Observatory and CUICTUniversidad de ColimaColimaMexico

Personalised recommendations