Advertisement

Ocean–Atmosphere Interactions of Particles

  • Gerrit de Leeuw
  • Cécile Guieu
  • Almuth Arneth
  • Nicolas Bellouin
  • Laurent Bopp
  • Philip W. Boyd
  • Hugo A. C. Denier van der Gon
  • Karine V. Desboeufs
  • François Dulac
  • M. Cristina Facchini
  • Brett Gantt
  • Baerbel Langmann
  • Natalie M. Mahowald
  • Emilio Marañón
  • Colin O’Dowd
  • Nazli Olgun
  • Elvira Pulido-Villena
  • Matteo Rinaldi
  • Euripides G. Stephanou
  • Thibaut Wagener
Chapter
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)

Abstract

This chapter provides an overview of the current knowledge on aerosols in the marine atmosphere and the effects of aerosols on climate and on processes in the oceanic surface layer. Aerosol particles in the marine atmosphere originate predominantly from direct production at the sea surface due to the interaction between wind and waves (sea spray aerosol, or SSA) and indirect production by gas to particle conversion. These aerosols are supplemented by aerosols produced over the continents, as well as aerosols emitted by volcanoes and ship traffic, a large part of it being deposited to the ocean surface by dry and wet deposition. The SSA sources, chemical composition and ensuing physical and optical effects, are discussed. An overview is presented of continental sources and their ageing and mixing processes during transport. The current status of our knowledge on effects of marine aerosols on the Earth radiative balance, both direct by their interaction with solar radiation and indirect through their effects on cloud properties, is discussed. The deposition on the ocean surface of some key species, such as nutrients, their bioavailability and how they impact biogeochemical cycles are shown and discussed through different time and space scales approaches.

References

  1. Adams P, Seinfeld J, Koch D (1999) Global concentrations of tropospheric sulfate, nitrate and ammonium aerosol simulated in a general circulation model. J Geophys Res 104:13791–13823Google Scholar
  2. Adler G, Flores JM, Riziq AA, Borrmann S, Rudich Y (2011) Chemical, physical, and optical evolution of biomass burning aerosols: a case study. Atmos Chem Phys 11:1491–1503. doi: 10.5194/acp-11-1491-2011CrossRefGoogle Scholar
  3. Aggarwal SG, Kawamura K (2008) Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J Geophys Res 113, D14301. doi: 10.1029/2007JD009365CrossRefGoogle Scholar
  4. Aiken AC, DeCarlo PF, Kroll JH et al (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ Sci Technol. doi: 10.1021/es703009qCrossRefGoogle Scholar
  5. Albert MFMA, Schaap M, Scannell C, O’Dowd CD, de Leeuw G (2012) Uncertainties in the determination of the organic fraction of global sub-micron sea-spray emissions. Atmos Environ 57:289–300. doi: 10.1016/j.atmosenv.2012.04.009CrossRefGoogle Scholar
  6. Alfaro SC, Gaudichet A, Gomes L, Maillé M (1997) Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res 102:11239–11249Google Scholar
  7. Alfaro SC, Gaudichet A, Gomes L, Maillé M (1998) Mineral aerosol production by wind erosion: aerosol particle sizes and binding energies. Geophys Res Lett 25:991–994Google Scholar
  8. Alfaro SC, Lafon S, Rajot JL, Formenti P, Gaudichet A, Maillé M (2004) Iron oxides and light absorption by pure desert dust: an experimental study. J Geophys Res 109, D08208. doi: 10.1029/2003JD004374CrossRefGoogle Scholar
  9. Alpert P, Kaufman YJ, Shay-El Y, Tanré D, da Silva A, Schubert S, Joseph JH (1998) Quantification of dust-forced heating of the lower troposphere. Nature 395:367–370Google Scholar
  10. Alvarado MJ, Prinn RG (2009) Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 1. Lagrangian parcel studies. J Geophys Res 114, D09306Google Scholar
  11. Anderson TL, Wu Y, Chu DA, Schmid B, Redemann J, Dubovik O (2005) Testing the MODIS satellite retrieval of aerosol fine-mode fraction. J Geophys Res 110, doi: 10.1029/2005JD005978
  12. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966Google Scholar
  13. Andreae MO, Rosenfeld D (2008) Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci Rev 89:13–41Google Scholar
  14. Andreae MO, Charlson RJ, Bruynseels F, Storms H, Van Grieken R, Maenhaut W (1986) Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science 32:1620–1623Google Scholar
  15. Andreas EL, Persson POG, Hare JE (2008) A bulk turbulent air-sea flux algorithm for high-wind, spray conditions. J Phys Oceanogr 38:1581–1596Google Scholar
  16. Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulphur emissions. J Geophys Res 103:25251–25261Google Scholar
  17. Angelino S, Suess DT, Prather KA (2001) Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometry. Environ Sci Technol 35(15):3130–3138Google Scholar
  18. Anguelova MD, Webster F (2006) Whitecap coverage from satellite measurements: a first step toward modeling the variability of oceanic whitecaps. J Geophys Res Oceans 111, C03017. doi: 10.1029/2005JC003158CrossRefGoogle Scholar
  19. Archer D, Winguth A, Lea D, Mahowald N (2000) What caused the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys 38:159–189Google Scholar
  20. Arimoto R, Duce RA, Ray BJ, Unni CK (1985) Atmospheric trace element at Enewetak Atoll: 2. Transport to the ocean by wet and dry deposition. J Geophys Res 90:2391–2408Google Scholar
  21. Arimoto R, Ray BJ, Lewis NF, Tomza U, Duce RA (1997) Mass particle size distribution of atmospheric dust and the dry deposition of dust to the remote ocean. J Geophys Res 102:15867–15874Google Scholar
  22. Arneth A, Niinemets U, Pressley S, Back J, Hari P, Karl T, Noe S, Prentice IC, Serca D, Hickler T, Wolf A, Smith B (2007) Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos Chem Phys 7:31–53Google Scholar
  23. Arneth A, Monson RK, Schurgers G, Niinemets U, Palmer PI (2008) Why are estimates of global isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8:4605–4620Google Scholar
  24. Arneth A, Sitch S, Bondeau A, Butterbach-Bahl K, Foster P, Gedney N, de Noblet-Ducoudre N, Prentice IC, Sanderson M, Thonicke K, Wania R, Zaehle S (2010) From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere. Biogeosciences 7:121–149Google Scholar
  25. Arneth A, Schurgers G, Lathiere J, Duhl T, Beerling DJ, Hewitt CN, Martin M, Guenther A (2011) Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmos Chem Phys 11:8037–8052. doi: 10.5194/acp-11-8037-2011, 2011CrossRefGoogle Scholar
  26. Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101Google Scholar
  27. Atkinson R, Arey J (2003a) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638Google Scholar
  28. Atkinson R, Arey J (2003b) Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos Environ 37(2):197–219Google Scholar
  29. Avila A, Rodà F (2002) Assessing decadal changes in rainwater alkalinity at a rural Mediterranean site in the Montseny mountains (NE Spain). Atmos Environ 36:2881–2890Google Scholar
  30. Avila A, Alarcón M, Queralt I (1998) The chemical composition of dust transported in red rains – its contribution to the biogeochemical cycle of a holm aok forest in Catalonia (Spain). Atmos Environ 32:179–191Google Scholar
  31. Aymoz G, Jaffrezo JL, Jacob V, Colomb A, George C (2004) Evolution of organic and inorganic components of aerosol during a Saharan dust episode observed in the French Alps. Atmos Chem Phys 4:2499–2512Google Scholar
  32. Baker AR, Croot PL (2010) Atmospheric and marine controls on aerosol iron solubility in seawater. Mar Chem 120:4–13Google Scholar
  33. Baker A, Jickells T (2006) Mineral particle size as a control on aerosol iron solubility. Geophys Res Lett 33, doi: 10.1029/2006GL026557
  34. Baker AR, Jickells TD, Witt M, Linge KL (2006a) Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar Chem 98:43–58Google Scholar
  35. Baker A, French M, Linge K (2006b) Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophys Res Lett 33, doi: 10.1029/2005GL024764
  36. Baker AR, Lesworth T, Adams C, Jickells TD, Ganzeveld L (2010) Estimation of atmospheric nutrient inputs to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: fixed nitrogen and dry deposition of phosphorus. Global Biogeochem Cycles 24, GB3006. doi: 10.1029/2009GB003634CrossRefGoogle Scholar
  37. Bardintzeff J-M, McBirney AR (2000) Volcanology. Second edition, Jones, Bartlett. Andres RJ, Kasgnoc AD (1998) A time-avaraged inventory of subaerial volcanic sulphur emissions. J Geophys Res 103:25252–25261Google Scholar
  38. Barkley MP, Palmer PI, Kuhn U, Kesselmeier J, Chance K, Kurosu TP, Martin RV, Helmig D, Guenther A (2008) Net ecosystem fluxes of isoprene over tropical South America inferred from GOME observations of HCHO columns. J Geophys Res 113(D20), D20304. doi: 10.1029/2008jd009863CrossRefGoogle Scholar
  39. Barkley MP, Palmer PI, Ganzeveld L, Arneth A, Hågberg D, Karl T, Guenther A, Paulot F, Wennberg PO, Mao J, Kurosu TP, Chance K, Muller J-F, De Smedt I, Van Roozendael M, Chen D, Wang Y, Yantosca RM (2011) Can a ‘state of the art’ chemistry transport model simulate Amazonian tropospehric chemistry? J Geophys Res 116, D16302. doi: 10.1029/2011JD015893CrossRefGoogle Scholar
  40. Barkley MP, Kurosu TP, Chance K, De Smedt I, Van Roozendael M, Arneth A, Hagberg D, Guenther A (2012) Assessing sources of uncertainty in formaldehyde air mass factors over tropical South America: implications for top-down isoprene emission estimates. J Geophys Res 117, D13304. doi: 10.1029/2011JD016827CrossRefGoogle Scholar
  41. Bellouin N, Jones A, Haywood J, Christopher S (2008) Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J Geophys Res 113, doi: 10.1029/2007JD009385
  42. Bellouin N, Rae JGL, Jones A, Johnson CE, Haywood JM, Boucher O (2011) Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res 116, D20206. doi: 10.1029/2011JD016074CrossRefGoogle Scholar
  43. Bergametti G, Gomes L, Remoudaki E, Desbois M, Martin D, Buat-Ménard P (1989) Present transport and deposition patterns of African dusts to the north-western Mediterranean. In: Leinen M, Sarnthein M (eds) Paleoclimatology and paleometeorology: modern and past patterns of global atmospheric transport. Kluwer, Boston, pp 227–251Google Scholar
  44. Bergametti G, Remoudaki E, Losno R, Steiner E, Chatenet B, Buat-Ménard P (1992) Source, transport and deposition of atmospheric phosphorus over the northwestern Mediterranean. J Atmos Chem 14:501–513Google Scholar
  45. Berresheim H, Elste T, Tremmel HG, Allen AG, Hansson H-C, Rosman K, Dal Maso M, Mäkelä JM, Kulmala M, O’Dowd CD (2002) Gas-aerosol relationships of H2SO4, MSA, and OH: observations in the coastal marine boundary layer at Mace Head, Ireland. J Geophys Res 107(D19):8100. doi: 10.1029/2000JD000229CrossRefGoogle Scholar
  46. Betzer PR, Carder KL, Duce RA, Merrill JT, Tindale NW, Uematsu M, Costello DK, Young RW, Feely RA, Breland JA, Bernstein RE, Greco AM (1988) Long-range transport of giant mineral aerosol particles. Nature 336:568–571Google Scholar
  47. Blain S, Guieu C, Claustre H, Leblanc K, Moutin T, Quéguiner B, Ras J, Sarthou G (2004) Availability of iron and major nutrients for phytoplankton in the northeast Atlantic Ocean. Limnol Oceanogr 49:2095–2104Google Scholar
  48. Blain S, Queguiner B, Armand L, Belviso S, Bombled B, Bopp L, Bowie A, Brunet C, Brussaard C, Carlotti F, Christaki U, Corbiere A, Durand I, Ebersbach F, Fuda J-L, Garcia N, Gerringa L, Griffiths B, Guigue C, Guillerm C, Jacquet S, Jeandel C, Laan P, Lefevre D, Lo Monaco C, Malits A, Mosseri J, Obernosterer I, Park Y-H, Picheral M, Pondaven P, Remenyi T, Sandroni V, Sarthou G, Savoye N, Scouarnec L, Souhaut M, Thuiller D, Timmermans K, Trull T, Uitz J, van Beek P, Veldhuis M, Vincent D, Viollier E, Vong L, Wagener T (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1075Google Scholar
  49. Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:73–112Google Scholar
  50. Blanchard DC (1964) Sea to air transport of surface active material. Science 146:396–397Google Scholar
  51. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo J-H, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109, D14203. doi: 10.1029/2003JD003697CrossRefGoogle Scholar
  52. Bonn B, Moortgat GK (2003) Sesquiterpene ozonolysis: origin of atmospheric new particle formation from biogenic hydrocarbons. Geophys Res Lett 30(11):1585. doi: 10.1029/2003GL017000CrossRefGoogle Scholar
  53. Bonnet S, Guieu C (2004) Dissolution of atmospheric iron in seawater. Geophys Res Lett 31, doi: 10.1029/2003GL018423
  54. Bonnet S, Guieu C, Chiaverini J, Ras J, Stock A (2005) Effect of atmospheric nutrients on the autotrophic communities in a low nutrient, low chlorophyll system. Limnol Oceanogr 50:1810–1819Google Scholar
  55. Bopp L, Monfray P, Aumont O, Dufresne J-L, Le Treut H, Madec G, Terray L, Orr JC (2001) Potential impact of climate change on marine export production. Global Biogeochem Cycles 15:81–99Google Scholar
  56. Bopp L, Kohfeld KE, Le Quéré C, Aumont O (2003) Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18:1046. doi: 10.1029/2002PA000810CrossRefGoogle Scholar
  57. Bory AJ-M, Biscaye PE, Grousset FE (2003) Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (North GRIP). Geophys Res Lett 30:1167. doi: 10.1029/2002GL016446CrossRefGoogle Scholar
  58. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DCE, Bowie AR, Buessler KO, Chang H, Charette MA, Croot P, Downing K, Frew RD, Gall M, Hadfield M, Hall JA, Harvey M, Jameson G, La Roche J, Liddicoat MI, Ling R, Maldonado M, McKay RM, Nodder SD, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner SM, Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702Google Scholar
  59. Boyd PW, Law CS, Wong CS, Nojiri Y, Tsuda A, Levasseur M, Takeda S, Rivkin R, Harrison PJ, Strzepek R, Gower J, McKay RM, Abraham E, Arychuk M, Barwell-Clarke J, Crawford W, Hale M, Harada K, Johnson K, Kiyosawa H, Kudo I, Marchetti A, Miller W, Needoba J, Nishioka J, Ogawa H, Page J, Robert M, Saito H, Sastri A, Sherry N, Soutar T, Sutherland N, Taira Y, Whitney F, Wong SE, Yoshimura T (2004) The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428:549–553Google Scholar
  60. Boyd PW, Jickells T, Law CS, Blain S et al (2007) A synthesis of mesoscale iron-enrichment experiments 1993–2005: key findings and implications for ocean biogeochemistry. Science 315:612–617Google Scholar
  61. Boyd PW, Mackie DS, Hunter KA (2010) Aerosol iron deposition to the surface ocean — modes of iron supply and biological responses. Mar Chem 120:130–145. doi: 10.1016/j.marchem.2009.01.008CrossRefGoogle Scholar
  62. Bressac M, Guieu C, Doxaran D, Bourrin F, Obolensky G, Grisoni J-M (2012) A mesocosm experiment coupled with optical measurements to assess the fate and sinking of atmospheric particles in clear oligotrophic waters. Geo-Mar Lett 32(2):153–164Google Scholar
  63. Bressac M, Guieu C, Doxaran D, Bourrin F, Desboeufs K, Leblond N, Ridame C (2013) Quantification of the lithogenic carbon pump following a dust deposition event. Biogeoscience 10, 13639–13677. doi: 10.5194/bgd-10-13639-2013, 2013Google Scholar
  64. Buat-Ménard P, Chesselet R (1979) Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci Lett 42:399–411Google Scholar
  65. Buat-Ménard P, Davies PJ, Remoudaki E, Miquel J-C, Bergametti G, Lamber CE, Ezat E, Quétel CR, La Rosa J, Fowler SW (1989) Non-steady-state biological removal of atmospheric particles from Mediterranean surface waters. Nature 340:131–133Google Scholar
  66. Buck KN, Bruland KW (2005) Copper speciation in San Francisco Bay: a novel approach using multiple analytical windows. Mar Chem 96:185–198Google Scholar
  67. Buck CS, Landing WM, Resing JA, Measures CI (2010) The solubility and deposition of aerosol Fe and other trace elements in the North Atlantic Ocean: observations from the A16N CLIVAR/CO2 repeat hydrography section. Mar Chem 120(1–4):57–70Google Scholar
  68. Buesseler KO, Bacon MP, Cochran JK, Livingston HD (1992) Carbon and nitrogen export during the JGOFS North Atlantic bloom experiment estimated from 234Th:238U disequilibria. Deep-Sea Res 39(7/8):1115–1137Google Scholar
  69. Buhaug Ø, Corbett JJ, Endresen Ø, Eyring V, Faber J, Hanayama S, Lee DS, Lindstad H, Mjelde A, Palsson C, Wanquing W, Winebrake JJ, Yoshida K (2008) Updated study on greenhouse gas emissions from ships: phase I report. International Maritime Organization (IMO), London, 1 Sept 2008, p 129Google Scholar
  70. Burkholder JB, Curtius J, Ravishankara AR et al (2004) Laboratory studies of the homogeneous nucleation of iodine oxides. Atmos Chem Phys 4:19–34Google Scholar
  71. Callaghan A, de Leeuw G, Cohen L, O’Dowd CD (2008) Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys Res Lett 35, L23609. doi: 10.1029/2008GL036165CrossRefGoogle Scholar
  72. Calvo-Díaz A, Díaz-Pérez L, Suárez LA, Morán XAG, Teira E, Marañón E (2011) Decrease in the autotrophic-to-heterotrophic biomass ratio of picoplankton in oligotrophic marine waters due to bottle enclosure. Appl Environ Microbiol 77:5739–5746Google Scholar
  73. Capes G, Johnson B, McFiggans G, Williams PI, Haywood J, Coe H (2008) Aging of biomass burning aerosols over West Africa Aircraft measurements of chemical composition microphysical properties and emission ratios. J Geophys Res 113, D00C15. doi: 10.1029/2008JD009845CrossRefGoogle Scholar
  74. Carlson TN, Prospero JM (1972) The large-scale movement of Saharan air outbreaks over the northern Equatorial Atlantic. J Appl Meteorol 11:283–297Google Scholar
  75. Carslaw KS, Boucher O, Spracklen DV, Mann GW, Rae JGL, Woodward S, Kulmala M (2010) A review of natural aerosol interactions and feedbacks within the Earth system. Atmos Chem Phys 10:1701–1737Google Scholar
  76. Cassar N, Bender ML, Barnett BA, Fan S, Moxim WJ, Levy H II, Tilbrook B (2007) The southern ocean biological response to Aeolian iron deposition. Science 317:1067–1070Google Scholar
  77. Cavalli F, Facchini MC, Decesari S, Mircea M, Emblico L, Fuzzi S, Ceburnis D, Yoon YJ, O’Dowd CD, Putaud J-P, Dell’Acqua A (2004) Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. J Geophys Res 109, D24215. doi: 10.1029/2004JD005137CrossRefGoogle Scholar
  78. Ceburnis D, O’Dowd CD, Jennings SG, Facchini MC, Emblico L, Decesari S, Fuzzi S, Sakalys J (2008) Marine aerosol chemistry gradients: elucidating primary and secondary processes and fluxes. Geophys Res Lett 35, L07804. doi: 10.1029/2008GL033462CrossRefGoogle Scholar
  79. Chance K, Palmer PI, Spurr RJD, Martin RV, Kurosu TP, Jacob DJ (2000) Satellite observations of formaldehyde over North America from GOME. Geophys Res Lett 27:3461–3464Google Scholar
  80. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661Google Scholar
  81. Chatenet B, Marticorena B, Gomes L, Bergametti G (1996) Assessing the microped size distribution of desert soils erodible by wind. Sedimentology 43:901–911Google Scholar
  82. Chazette P, Pelon J, Moulin C, Dulac F, Carrasco I, Guelle W, Bousquet P, Flamant P-H (2001) Lidar and satellite retrieval of dust aerosols over the Azores during SOFIA/ASTEX. Atmos Environ 35:4297–4304Google Scholar
  83. Chen Y, Siefert R (2004) Sesaonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean. J Geophys Res 109, D09305. doi:09310.01029/02003JD003958 Google Scholar
  84. Chen Y, Street J, Paytan A (2006) Comparison between pure-water- and seawater-soluble nutrient concentrations of aerosols from the Gulf of Aqaba. Mar Chem 101:141–152Google Scholar
  85. Chen Y, Mills S, Street J, Golan D, Post A, Jacobson M, Paytan A (2007) Estimates of atmospheric dry deposition and associated input of nutrients to Gulf of Aqaba seawater. J Geophys Res 112, D04309. doi: 10.1029/2006JD007858CrossRefGoogle Scholar
  86. Chou C, Formenti P, Maille M, Ausset P, Helas G, Harrison M, Osborne S (2008) Size distribution, shape, and composition of mineral dust aerosols collected during the African monsoon multidisciplinary analysis special observation period 0: dust and biomass-burning experiment field campaign in Niger, January 2006. J Geophys Res 113, D00C10. doi: 10.1029/2008JD009897CrossRefGoogle Scholar
  87. Chuang P, Duvall R, Shafer M, Schauer J (2005) The origin of water soluble particulate iron in the Asian atmospheric outflow. Geophys Res Lett 32, doi: 10.1029/2004GL021946Google Scholar
  88. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176Google Scholar
  89. Claeys M, Wang W, Vermeylen R, Kourtchev I, Chi X, Farhat Y, Surratt JD, Gómez-González Y, Sciare J, Maenhaut W (2010) Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006–2007. J Aerosol Sci 41:13–22Google Scholar
  90. Clarke AD, Davis D, Kapustin VN, Eisele F, Chen G, Paluch I, Lenschow D, Bandy AR, Thornton D, Moore K, Mauldin L, Tanner D, Litchy M, Carroll MA, Collings J, Albercook G (1998) Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources. Sciences 282:89–91Google Scholar
  91. Clarke AD, Qwens SR, Zhou J (2006) An ultrafine sea-salt flux from breaking waves: implications for cloud condensation nuclei in the remote marine atmosphere. J Geophys Res 111, D06202. doi: 10.1029/2005JD006565CrossRefGoogle Scholar
  92. Claustre H, Morel A, Hooker SB, Babin M, Antoine D, Oubelkheir K, Bricaud A, Leblanc K, Quéguiner B, Maritorena S (2002) Is desert dust making oligotrophic waters greener? Geophys Res Lett 29:1469. doi: 10.1029/2001GL014056CrossRefGoogle Scholar
  93. Colarco PR, Toon OB, Holben BN (2003a) Saharan dust transport to the Caribbean during PRIDE: 1. Influence of dust sources and removal mechanisms on the timing and magnitude of downwind aerosol optical depth events from simulations of in situ and remote sensing observations. J Geophys Res D Atmos 108(19):5–1–5–20Google Scholar
  94. Colarco PR, Toon OB, Reid JS, Livingston JM, Russell PB, Redemann J, Schmid B, Maring HB, Savoie D, Welton EJ, Campbell JR, Holben BN, Levy R (2003b) Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations. J Geophys Res D Atmos 108(19):6–1–6–16Google Scholar
  95. Corbett JJ, Köhler HW (2003) Updated emissions from ocean shipping. J Geophys Res 108:4650. doi: 10.1029/2003JD003751CrossRefGoogle Scholar
  96. Cornell SE (2011) Atmospheric nitrogen deposition: revisiting the importance of the organic component. Environ Pollut 159:2214–2222Google Scholar
  97. Cornell SE, Rendell A, Jickells TD (1995) Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376:243–246Google Scholar
  98. Covert DS, Kapustin VN, Bates TS, Quinn PK (1992) New particle formation in the marine boundary layer. J Geophys Res 97:20581–20589Google Scholar
  99. Covert DS, Wiedensohler A, Aalto P et al (1996a) Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn. TELLUS ser B 48(2):197–212Google Scholar
  100. Covert DS, Kapustin VN, Bates TS et al (1996b) Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport. J Geophys Res-Atmos 101(D3):6919–6930. doi: 10.1029/95JD03068CrossRefGoogle Scholar
  101. Coz E, Gómez-Moreno FJ, Pujadas M, Casuccio GS, Lersch TL, Artíñano B (2009) Individual particle characteristics of North African dust under different long-range transport scenarios. Atmos Environ 43:1850–1863Google Scholar
  102. Crahan KK, Hegg D, Covert DS, Jonsson H (2004) An exploration of aqueous oxalic acid production in the coastal marine atmosphere. Atmos Environ 38:3757–3764Google Scholar
  103. Crumeyrolle S, Gomes L, Tulet P, Matsuki A, Schwarzenboeck A, Crahan K (2008) Increase of the aerosol hygroscopicity by cloud processing in a mesoscale convective system: a case study from the AMMA campaign. Atmos Chem Phys 8:6907–6924Google Scholar
  104. Dall’Osto M, Harrison RM, Highwood EJ, O’Dowd C, Ceburnis D, Querol X, Achterberg EP (2010) Variation of the mixing state of Saharan dust particles with atmospheric transport. Atmos Environ 44:3135–3146Google Scholar
  105. Dall-Osto M, Ceburnis D, Monahan C, Worsnop DR, Bialek J, Kulmala M, Kurtén T, Ehn M, Wenger J, Sodeau J, Healy RC, O’Dowd C (2012) Nitrogenated and aliphatic organic vapours as possible drivers for marine secondary organic aerosol growth. J Geophys Res doi: 10.1029/2012JD017522Google Scholar
  106. de Baar HJW, Boyd PW, Coale KH, Landry MR, Tsuda A, Assmy P, Bakker DCE, Bozec Y, Barber RT, Brzezinski MA, Buesseler KO, Boyé M, Croot PL, Gervais F, Gorbunov MY, Harrison PJ, Hiscock WT, Laan P, Lancelot C, Law CS, Levasseur M, Marchetti A, Millero FJ, Nishioka J, Nojiri Y, van Oijen T, Riebesell U, Rijkenberg MJA, Saito H, Takeda S, Timmermans KR, Veldhuis MJW, Waite AM, Wong C-S (2005) Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J Geoph Res 110, C09S16. doi: 10.1029/2004JC002601CrossRefGoogle Scholar
  107. de Gouw JA, Middlebrook AM, Warneke C, Goldan PD, Kuster WC, Roberts JM, Fehsenfeld FC, Worsnop DR, Canagaratna MR, Pszenny AAP, Keene WC, Marchewka M, Bertman SB, Bates TS (2005) Budget of organic carbon in a polluted atmosphere: results from the New England air quality study in 2002. J Geophys Res 110, D16305. doi: 10.1029/2004jd005623CrossRefGoogle Scholar
  108. de Leeuw G, Andreas EL, Anguelova MD, Fairall CW, Lewis ER, O’Dowd C, Schulz M, Schwartz SE (2011a) Production flux of sea spray aerosol. Rev Geophys 49, RG2001. doi: 10.1029/2010RG000349CrossRefGoogle Scholar
  109. de Leeuw G, Kinne S, Leon JF, Pelon J, Rosenfeld D, Schaap M, Veefkind PJ, Veihelmann B, Winker DM, von Hoyningen-Huene W (2011b) Retrieval of aerosol properties. In: Burrows JP, Platt U, Borrell P (eds) The remote sensing of tropospheric composition from space. Springer, Berlin/Heidelberg, pp 359–313. doi: 10.1007/978-3-642-14791-3. ISBN 978-3-642-14790-6CrossRefGoogle Scholar
  110. DeCarlo PF, Dunlea EJ, Kimmel JR, Aiken AC, Sueper D, Crounse J, Wennberg PO, Emmons L, Shinozuka Y, Clarke A, Zhou J, Tomlinson J, Collins DR, Knapp D, Weinheimer AJ, Montzka DD, Campos T, Jimenez JL (2008) Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmos Chem Phys 8:4027–4048Google Scholar
  111. Decesari S, Finessi E, Rinaldi M, Paglione M, Fuzzi S, Stephanou EG, Tziaras T, Spyros A, Ceburnis D, O’Dowd CD, Dall’Osto M, Harrison RM, Allan J, Coe H, Facchini MC (2011) Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. J Geophys Res 116, D22210. doi: 10.1029/2011JD016204CrossRefGoogle Scholar
  112. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New YorkGoogle Scholar
  113. Dentener FJ, Carmichael GR, Zhang Y, Lelieveld J, Crutzen PJ (1996) Role of mineral aerosol as a reactive surface in the global troposphere. J Geophys Res 101:22869–22889Google Scholar
  114. Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B et al (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cycles 20, GB4003Google Scholar
  115. Desboeufs KV, Losno R, Colin JL (2001) Factors influencing aerosol solubility during cloud processes. Atmos Environ 35:3529–3537Google Scholar
  116. Desboeufs K, Journet E, Rajot JL, Chevaillier S, Triquet S, Formenti P, Zakou A (2010) Chemistry of rain events in West Africa: evidence of dust and biogenic influence in convective systems. Atmos Chem Phys 10:9283–9293Google Scholar
  117. Doney S, Mahowald N, Lima I, Feeley R, Mackenzie F, Lamarque JF, Rasch P (2007) Impact of an-thropogenic atmospheric nitrogen and sulfur depositionon ocean acidification and the inorganic carbon system. PNAS 104, doi: 10.1073/pnas.0702218104; 0702214580–0702214585Google Scholar
  118. Duarte CM, Agustí S, Gasol JM, Vaqué D, Vazquez-Dominguez E (2000) Effect of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Mar Ecol Prog Ser 206:87–95Google Scholar
  119. Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608Google Scholar
  120. Dubovik O, Herman M, Holdak A, Lapyonok T, Tanré D, Deuzé JL, Ducos F, Sinyuk A, Lopatin A (2011) Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos Meas Tech 4:975–1018Google Scholar
  121. Duce R (1986) The impact of atmospheric nitrogen, phosophorus and iron species on marine biological productivity. In: Buat-Menard P (ed) Geochemical cycling. D. Reidel, Norwell, pp 497–529Google Scholar
  122. Duce RA et al (2008) Impacts of atmospheric nitrogen on the open ocean. Science 320:893–897Google Scholar
  123. Duggen S, Croot P, Schacht U, Hoffmann L (2007) Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: evidence from biogeochemical experiments and satellite data. Geophys Res Lett 34, doi: 10.1029/2006GL027522
  124. Dulac F, Buat-Ménard P, Ezat U, Melki S, Bergametti G (1989) Atmospheric input of trace metals to the western Mediterranean: uncertainties in modelling dry deposition from cascade impactor data. Tellus 41B:362–378Google Scholar
  125. Dulac F, Bergametti G, Losno R, Remoudaki E, Gomes L et al (1992) Dry deposition of mineral aerosol particles in the marine atmosphere: significance of the large size fraction. In: Schwartz SE, Slinn WGN (eds) Precipitation scavenging and atmosphere-surface exchange 2. Hemisphere, Washington, DC, pp 841–854Google Scholar
  126. Dulac F, Moulin C, Lambert CE, Guillard F, Poitou J, Guelle W, Quétel CR, Schneider X, Ezat U (1996) Quantitative remote sensing of African dust transport to the Mediterranean. In: Guerzoni S, Chester R (eds) The impact of African dust across the Mediterranean. Kluwer, Norwell, pp 25–49Google Scholar
  127. Dulac F, Chazette P, Gomes L, Chatenet B, Berger H, Vinicula Dos Santos JM (2001) A method for aerosol profiling in the lower troposphere with coupled scatter and meteorological rawindsondes and first data from the tropical Atlantic off Sahara. J Aerosol Sci 32:1069–1086Google Scholar
  128. Dunlea EJ, DeCarlo PF, Aiken AC, Kimmel JR, Peltier RE, Weber RJ, Tomlinson J, Collins DR, Shinozuka Y, McNaughton CS, Howell SG, Clarke AD, Emmons LK, Apel EC, Pfister GG, van Donkelaar A, Martin RV, Millet DB, Heald CL, Jimenez JL (2009) Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmos Chem Phys 9:7257–7287. doi: 10.5194/acp-9-7257-2009CrossRefGoogle Scholar
  129. Duvall RM, Majestic BJ, Shafer MM, Chuang PY, Simoneit BRT, Schauer JJ (2008) The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmos Environ 42:5872–5884Google Scholar
  130. Ehn M, Vuollekoski H, Petäjä T, Kerminen V-M, Vana M, Aalto P, de Leeuw G, Ceburnis D, Dupuy R, O’Dowd CD, Kulmala M (2010) Growth rates during coastal and marine new particle formation in Western Ireland. J Geophys Res. doi: 10.1029/2010JD014292CrossRefGoogle Scholar
  131. Endresen Ø, Sørgard E, Sundet JK, Dalsøren SB, Isaksen ISA, Berglen TF, Gravir G (2003) Emission from international sea transportation and environmental impact. J Geophys Res 108:4560. doi: 10.1029/2002JD002898CrossRefGoogle Scholar
  132. Endresen Ø, Sørgard E, Behrens HL, Brett PO, Isaksen ISA (2007) A historical reconstruction of ships’ fuel consumption and emissions. J Geophys Res 112, D12301. doi: 10.1029/2006JD007630CrossRefGoogle Scholar
  133. Erel Y, Dayan U, Rabi R, Rudich Y, Stein M (2006) Trans boundary transport of pollutants by atmospheric mineral dust. Environ Sci Technol 40:2996–3005Google Scholar
  134. Eyring V, Köhler HW, van Aardenne J, Lauer A (2005) Emissions from international shipping: 1. The last 50 years. J Geophys Res 110, D17305Google Scholar
  135. Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2009) Transport impacts on atmosphere and climate: shipping. Atmos Environ. doi: 10.1016/j.atmosenv.2009.04.059CrossRefGoogle Scholar
  136. Facchini MC, Rinaldi M, Decesari S, Carbone C, Finessi E, Mircea M, Fuzzi S, Ceburnis D, Flannigan R, Nilsson ED, de Leeuw G, Martino M, Woeltjen J, O’Dowd CD (2008a) Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophys Res Lett 35, L17814. doi: 10.1029/2008GL034210CrossRefGoogle Scholar
  137. Facchini MC, Decesari S, Rinaldi M, Carbone C, Finessi E, Mircea M, Fuzzi S, Moretti F, Tagliavini E, Ceburnis D, O’Dowd CD (2008b) An important source of marine secondary organic aerosol from biogenic amines. Environ Sci Technol. doi: 10.1021/es8018385CrossRefGoogle Scholar
  138. Fairlie TD, Jacob DJ, Dibb JE, Alexander B, Avery MA, van Donkelaar A, Zhang L (2010) Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmos Chem Phys 10:3999–4012Google Scholar
  139. Falkovich AH, Ganor E, Levin Z, Formenti P, Rudich Y (2001) Chemical and mineralogical analysis of individual mineral dust particles. J Geophys Res 106:18029–18036Google Scholar
  140. Falkovich AH, Schkolnik G, Ganor E, Rudich Y (2004) Adsorption of organic compounds pertinent to urban environments onto mineral dust particles. J Geophys Res 109, D02208. doi: 10.1029/2003jd003919CrossRefGoogle Scholar
  141. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206Google Scholar
  142. Fan X-B, Okada K, Niimura N, Kai K, Arao K, Shi G-Y, Qin Y, Mitsuta Y (1996) Mineral particles collected in China and Japan during the same Asian dust-storm event. Atmos Environ 30:347–351Google Scholar
  143. Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, Berlin/Heidelberg/New York/TokyoGoogle Scholar
  144. Formenti P, Schütz L, Balkanski Y, Desboeufs K, Ebert M, Kandler K, Petzold A, Scheuvens D, Weinbruch S, Zhang D (2011) Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos Chem Phys 11:8231–8256Google Scholar
  145. Forster PM, Ramaswamy V et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  146. Fowler SW, Buat-Ménard P, Yokoyama Y, Ballestra S, Holm E, Van Nguyen H (1987) Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity. Nature 329:56–58Google Scholar
  147. Frew NM (1997) The role of organic films in air-sea gas exchange. In: Liss PS, Duce RA (eds) The sea surface and global change. Cambridge University Press, Cambridge, pp 121–172Google Scholar
  148. Frogner P, Gislason SR, Óskarsson N (2001) Fertilizing potential of volcanic ash in ocean surface water. Geology 29:487–490Google Scholar
  149. Frossard AA, Shaw PM, Russell LM, Kroll JH, Canagaratna MR, Worsnop DR, Quinn PK, Bates TS (2011) Springtime Arctic haze contributions of submicron organic particles from European and Asian combustion sources. J Geophys Res 116, D05205. doi: 10.1029/2010JD015178CrossRefGoogle Scholar
  150. Froyd KD, Murphy SM, Murphy DM, de Gouw JA, Eddingsaas NC, Wennberg PO (2010) Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proc Natl Acad Sci. doi: 10.1073/pnas.1012561107CrossRefGoogle Scholar
  151. Fu PQ, Kawamura K, Miura K (2011) Molecular characterization of marine organic aerosols collected during a round-the-world cruise. J Geophys Res Atmos 116(14), D13302. doi: 10.1029/2011jd015604CrossRefGoogle Scholar
  152. Fuentes E, Coe H, Green D, de Leeuw G, McFiggans G (2010) Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos Meas Tech 3:141–162Google Scholar
  153. Fuentes E, Coe H, Green D, McFiggans G (2011) On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol – part 2: composition, hygroscopicity and cloud condensation activity. Atmos Chem Phys 11:2585–2602. doi: 10.5194/acp-11-2585-2011CrossRefGoogle Scholar
  154. Fung I, Meyn SK, Tegen I, Doney S, John J, Bishop J (2000) Iron supply and demand in the upper ocean. Global Biogeochem Cycles 14:281–295Google Scholar
  155. Gaiero DM, Probst JL, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3603–3623Google Scholar
  156. Galloway J, Townsend A, Erisman J, Bekunda M, Cai Z, Freney J, Martinelli L, Seitzinger S, Sutton M (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892Google Scholar
  157. Gantt B, Meskhidze N, Facchini MC, Rinaldi M, Ceburnis D, O’Dowd CD (2011) Wind speed dependent size-resolved parameterization for the organic enrichment of sea spray. Atmos Chem Phys 11:1–13Google Scholar
  158. Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW, Kellogg CA, Majewski MS, Richardson LL, Ritchie KB, Smith GW (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53:469–479Google Scholar
  159. Garrison VH, Foreman WT, Genualdi S, Griffin DW, Kellogg CA, Majewski MS, Mohammed A, Ramsubhag A, Shinn EA, Simonich SL, Smith GW (2006) Saharan dust – a carrier of persistent organic pollutants, metals and microbes to the Caribbean? Rev Biol Trop (Int J Trop Biol ISSN-0034-7744) 54(3):9–21Google Scholar
  160. Geever M, O’Dowd CD, van Ekeren S, Flanagan R, Nilsson DE, de Leeuw G, Rannik Ü (2005) Sub-micron sea-spray fluxes. Geophys Res Lett. doi: 10.1029/2005GL023081CrossRefGoogle Scholar
  161. Geng H, Park Y, Hwang H, Kang S, Ro CU (2009) Elevated nitrogen-containing particles observed in Asian dust aerosol samples collected at the marine boundary layer of the Bohai Sea and the Yellow Sea. Atmos Chem Phys 9:6933–6947Google Scholar
  162. Gershey RM (1983) Characterization of seawater organic matter carried by bubble-generated aerosols. Limnol Oceanogr 28:309–319Google Scholar
  163. Gibb SW, Mantoura RFC, Liss PS (1999) Ocean atmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian Sea. Global Biogeochem Cycles 13:161–178Google Scholar
  164. Giglio L, Randerson JT, van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, DeFries RS (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186Google Scholar
  165. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33, L08707. doi: 10.1029/2006gl025734CrossRefGoogle Scholar
  166. Giovagnetti V, Brunet C, Conversano F, Tramontano F, Obernosterer I, Ridame C, Guieu C (2013) Assessing the role of dust deposition on phytoplankton ecophysiology and succession in a low-nutrient low-chlorophyll ecosystem: a mesocosm experiment in the Mediterranean, Sea. Biogeosciences 10:2973–2991. doi: 10.5194/bg-10-2973-2013CrossRefGoogle Scholar
  167. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the Earth’s at-mosphere. Environ Sci Technol 41:1514–1521Google Scholar
  168. Gomes L, Bergametti G, Coudé-Gaussens G, Rognon P (1990) Submicron desert dusts: a sandblasting process. J Geophys Res 95:13927–13935Google Scholar
  169. Gong SL (2003) A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Global Biogeochem Cycles 17:1097. doi: 10.1029/2003GB002079CrossRefGoogle Scholar
  170. Gorbushina AA, Kort R, Schulte A, Lazarus D, Schnetger B, Brumsack H-J, Broughton WJ, Favet J (2007) Life in Darwin’s dust: intercontinental transport and survival of microbes in the nineteenth century. Environ Microbiol 9(12):2911–2922Google Scholar
  171. Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, BerlinGoogle Scholar
  172. Graedel TE, Keene WC (1995) Tropospheric budget of reactive chlorine. Global Biogeochem Cycles 9:47–77Google Scholar
  173. Graf HF, Feichter J, Langmann B (1997) Volcanic sulfur emissions: estimates of source strength and its contribution to the global sulfate distribution. J Geophys Res-Atmos 102:10727–10738Google Scholar
  174. Graham WF, Duce RA (1979) Atmospheric pathways of the phosphorus cycle. Geochimica et Cosmo-chimica Acta 43:1195–1208Google Scholar
  175. Granier C, Bessagnet B, Bond T, D’Angiola A, Denier van der Gon H, Frost GJ, Heil A, Kaiser JW, Kinne S, Klimont Z et al (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Chang. doi: 10.1007/s10584-011-0154-1CrossRefGoogle Scholar
  176. Greeley R, Iversen J (1985) Wind as a geological process on Earth, Mars, Venus and Titan, vol 4, Cambridge planetary sciences series. Cambridge University Press, Cambridge, p 333Google Scholar
  177. Grieshop AP, Logue JM, Donahue NM, Robinson AL (2009) Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution. Atmos Chem Phys 9:1263–1277Google Scholar
  178. Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20(3):459–477. doi: 10.1128/CMR.00039-06CrossRefGoogle Scholar
  179. Grousset F, Biscaye P (2005) Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes. Chem Geol 222:149–167Google Scholar
  180. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmermann P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100(D5):8873–8892Google Scholar
  181. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of emissions of gases and Aerosols from nature). Atmos Chem Phys 6:3181–3210Google Scholar
  182. Guieu C, Loye-Pilot MD, Ridame C, Thomas C (2002) Chemical characterization of the Saharan dust end-member: some biogeochemical implications for the western Mediterranean Sea. J Geophys Res Atmos 107:4258. doi: 10.1029/2001JD000582CrossRefGoogle Scholar
  183. Guieu C, Bonnet S, Wagener T, Loÿe-Pilot MD (2005) Biomass burning as a source of dissolved iron to open ocean? Geophys Res Lett 32, doi:L1960810.1029/2005GL022962Google Scholar
  184. Guieu C, Dulac F, Desboeufs K, Wagener T, Pulido-Villena E, Grisoni J-M, Louis F, Ridame C, Blain S, Brunet C, Bon Nguyen E, Tran S, Labiadh M, Dominici J-M (2010) Large clean mesocosms and simulated dust deposition: a new methodology to investigate responses of marine oligotrophic ecosystems to atmospheric inputs. Biogeosciences 7:2765–2784Google Scholar
  185. Guieu C, Ridame C, Pulido-Villena E, Blain S, Bressac M, Desboeufs K, Dulac F, Does dust deposition change the metabolic balance of a typical oligotrophic marine environment? (in preparation)Google Scholar
  186. Guieu C, Dulac F, Ridame C, Pondaven P (2013) Introduction to the project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem, Biogeosciences Discuss 10:12491–12527Google Scholar
  187. Halloran PR, Bell TG, Totterdell IJ (2010) Can we trust empirical marine DMS parameterisations within projections of future climate? Biogeosciences 7:1645–1656Google Scholar
  188. Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prevot ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9(14):5155–5235Google Scholar
  189. Halmer MM, Scmincke HU, Graf HF (2002) The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J Volcanol Geotherm Res 115:511–528Google Scholar
  190. Hamm CE (2002) Interactive aggregation and sedimentation of diatoms, and clay-sized lithogenic material. Limnol Oceanogr 47:1790–1795Google Scholar
  191. Hamme RC, Webley PW, Crawford WR, Whitney FA, DeGrandpre MD, Emerson SR, Eriksen CC, Giesbrecht KE, Gower JFR, Kavanaugh MT, Peña MA, Sabine CL, Batten SD, Coogan LA, Grundle DS, Deirdre LD (2010) Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys Res Lett 37, L19604. doi: 10.1029/2010GL044629CrossRefGoogle Scholar
  192. Hamonou E, Chazette P, Balis D, Dulac F, Schneider X, Galani E, Ancellet G, Papayannis A (1999) Characterization of the vertical structure of Saharan dust export to the Mediterranean basin. J Geophys Res 104:22257–22270Google Scholar
  193. Hand J, Mahowald N, Chen Y, Siefert R, Luo C, Subramaniam A, Fung I (2004) Estimates of soluble iron from observations and a global mineral aerosol model: biogeochemical implications. J Geophys Res 109, D17205, doi:17210.11029/12004JD004574Google Scholar
  194. Hand VL, Capes G, Vaughan DJ, Formenti P, Haywood JM, Coe H (2010) Evidence of internal mixing of African dust and biomass burning particles by individual particle analysis using electron beam techniques. J Geophys Res Atmos 115, D13301. doi: 10.1029/2009jd012938CrossRefGoogle Scholar
  195. Hanisch F, Crowley JN (2001) The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components. Phys Chem Chem Phys 3:2474–2482Google Scholar
  196. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22:202–211Google Scholar
  197. Hawkins LN, Russell LM, Covert DS, Quinn PK, Bates TS (2010) Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008. J Geophys Res 115, D13201. doi: 10.1029/2009jd013276CrossRefGoogle Scholar
  198. Heald CL, Jacob DJ, Park RJ, Russell LM, Huebert BJ, Seinfeld JH, Liao H, Weber RJ (2005) A large organic aerosol source in the free troposphere missing from current models. Geophys Res Lett 32, L18809. doi: 10.1029/2005gl023831CrossRefGoogle Scholar
  199. Hedges IH, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Ogel-Knabner IK, de Leeuw JW, Littke R, Michaelis W, Rullkotter J (2000) The molecularly uncharacterized component of nonliving organic matter in natural environments. Organic Geochem 31:945–951Google Scholar
  200. Hennigan CJ, Miracolo MA, Engelhart GJ, May AA, Presto AA, Lee T, Sullivan AP, McMeeking GR, Coe H, Wold CE, Hao WM, Gilman JB, Kuster WC, de Gouw J, Schichtel BA, Collett JL, Kreidenweis SM, Robinson AL (2011) Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos Chem Phys 11:7669–7686Google Scholar
  201. Henze D, Seinfeld JH (2006) Global secondary organic aerosol from isoprene oxidation. Geophys Res Lett 33, L09812. doi: 10.1029/2006GL025976CrossRefGoogle Scholar
  202. Herut B et al (2005) Response of East Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep-Sea Res II 52:3024–3040Google Scholar
  203. Hildebrandt L, Engelhart GJ, Mohr C, Kostenidou E, Lanz VA, Bougiatioti A, DeCarlo PF, Prevot ASH, Baltensperger U, Mihalopoulos N, Donahue NM, Pandis SN (2010) Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment 2008. Atmos Chem Phys 10:4167–4186. doi: 10.5194/acp-10-4167-2010CrossRefGoogle Scholar
  204. Hill PG, Zubkov MV, Purdie DA (2010) Differential responses of Prochlorococcus and SAR11-dominated bacterioplankton groups to atmospheric dust inputs in the tropical Northeast Atlantic Ocean. FEMS Microbiol Lett 306:82–89Google Scholar
  205. Hoffmann T, O’Dowd CD, Seinfeld JH (2001) Iodine oxide homogeneous nucleation: an explanation for coastal new particle production. Geophys Res Lett 28(10):1949–1952. doi: 10.1029/2000GL012399CrossRefGoogle Scholar
  206. Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer J, Chatenet B, Lavenue F, Kaufman YJ, Vande Castle J, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karnieli A, O’Neill NT, Pietras C, Pinker RT, Voss K, Zibordi G (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J Geophys Res 106:12067–12097Google Scholar
  207. Holzinger R, Lee A, Paw U KT, Goldstein AH (2005) Observations of oxidation products above a forest imply biogenic emissions of very reactive compounds. Atmos Chem Phys 5:67–75Google Scholar
  208. Holmes BJ, Petrucci GA (2006) Water-soluble oligomer formation from acid catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols. Environ Sci Technol 40:4983–4989Google Scholar
  209. Honeyman BD, Santschi PH (1991) Coupling adsorption and particle aggregation: laboratory studies of “colloidal pumping” using 59Fe-labeled hematite. Environ Sci Technol 25:1739–1747Google Scholar
  210. Hoppel WA, Frick GM, Larson RE (1986) Effect of nonprecipitating clouds on the aerosol size distribution. Geophys Res Lett 13:125–128Google Scholar
  211. Hoppel WA, Frick GM, Fitzgerald J et al (1994) Marine boundary-layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol-size distribution. J Geophys Res-Atmos 99(D7):14443–14459. doi: 10.1029/94JD00797CrossRefGoogle Scholar
  212. Horňák K, Jezbera J, Nedoma J, Gasol JM, Simek K (2006) Effects of resource availability and bac-terivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquat Microb Ecol 45:277–289Google Scholar
  213. Hsu S-C, Liu SC, Kao S-J, Jeng W-L, Huang Y-T, Tseng C-M, Tsai F, Tu J-Y, Yang Y (2007) Water-soluble species in the marine aerosol from the northern South China Sea: high chloride depletion related to air pollution. J Geophys Res 112, D19304. doi: 10.1029/2007jd008844CrossRefGoogle Scholar
  214. Huang K, Zhuang GS, Li JA, Wang QZ, Sun YL, Lin YF, Fu JS (2010) Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. J Geophys Res Atmos 115, D00k13, doi: 10.1029/2009jd013145
  215. Hultin KAH, Krejci R, Pinhassi J, Gomez-Consarnau L, Mårtensson EM, Hagström Å, Nilsson ED (2011) Aerosol and bacterial emissions from Baltic seawater. Atmos Res 99:1–14Google Scholar
  216. Hunter KA, Boyd PW (2007) Iron-binding ligands and their role in the ocean biogeochemistry of iron. Environ Chem 4:221–232. doi: 10.1071/EN07012CrossRefGoogle Scholar
  217. Hunter K, Liss P, Surapipith V, Dentener F, Duce R, Kanakidou M, Kubilay N, Mahowald N, Okin G, Sarin M, Uematsu M, Zhu T (2011) Impacts of anthropogenic SOx, NOx and NH3 on acidifiation of coastal waters and shipping lanes. Geophys Res Lett 38, doi: 10.1029/2011GL047720Google Scholar
  218. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, UK and New York, NY, p 996Google Scholar
  219. Irshad R, Grainger RG, Peters DM, McPheat RA, Smith KM, Thomas G (2009) Laboratory measurements of the optical properties of sea salt aerosol. Atmos Chem Phys 9:221–230Google Scholar
  220. Iversen JB, White DR (1982) Saltation threshold on Earth, Mars and Venus. Sedimentology 29:111–119Google Scholar
  221. Iwasaka Y, Yamato M, Imasu R, Ono A (1988) Transport of Asian dust (KOSA) particles; importance of weak KOSA events on the geochemical cycle of soil particles. Tellas B Chem Phys Meterol 40B:494–503Google Scholar
  222. Jaeglé L, Quinn PK, Bates TS, Alexander B, Lin J-T (2011) Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos Chem Phys 11:3137–3157Google Scholar
  223. Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308(5718):73. doi: 10.1126/science.1106335CrossRefGoogle Scholar
  224. Jahnke RA (1996) The global ocean flux of particulate organic carbon: areal distribution and magnitude. Global Biogeochem Cycles 10:71–88Google Scholar
  225. Jickells T, Spokes L (2001) Atmospheric iron inputs to the oceans. In: Turner DR, Hunteger K (eds) Biogeochemistry of iron in seawater. Wiley, Chichester, pp 85–121Google Scholar
  226. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, la Roche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71Google Scholar
  227. Jimenez JL, Bahreini R, Cocker DR III, Zhuang H, Varutbangkul V, Flagan RC, Seinfeld JH, O’Dowd CD, Hoffmann T (2003) New particle formation from photooxidation of diiodomethane (CH2 I2). J Geophys Res 108(D10):4318. doi: 10.1029/2002JD002452CrossRefGoogle Scholar
  228. Jimenez JL, Canagaratna MR, Donahue NM, Prevot ASH, Zhang Q, Kroll JH, DeCarlo PF, Allan JD, Coe H, Ng NL, Aiken AC, Docherty KS, Ulbrich IM, Grieshop AP, Robinson AL, Duplissy J, Smith JD, Wilson KR, Lanz VA, Hueglin C, Sun YL, Tian J, Laaksonen A, Raatikainen T, Rautiainen J, Vaattovaara P, Ehn M, Kulmala M, Tomlinson JM, Collins DR, Cubison MJE, Dunlea J, Huffman JA, Onasch TB, Alfarra MR, Williams PI, Bower K, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Salcedo D, Cottrell L, Griffin R, Takami A, Miyoshi T, Hatakeyama S, Shimono A, Sun JY, Zhang YM, Dzepina K, Kimmel JR, Sueper D, Jayne JT, Herndon SC, Trimborn AM, Williams LR, Wood EC, Middlebrook AM, Kolb CE, Baltensperger U, Worsnop DR (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529Google Scholar
  229. Johansen AM, Siefert RL, Hoffmann MR (1999) Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: anions and cations. J Geophys Res 104:26325–26347Google Scholar
  230. Jones MT, Gislason SR (2008) Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim Cosmochim Acta 72:3661–3680Google Scholar
  231. Journet E, Desboeufs KV, Caquineau S, Colin J-L (2008) Mineralogy as a critical factor of dust iron solubility. Geophys Res Lett 35, L07805. doi: 10.1029/2007GL031589CrossRefGoogle Scholar
  232. Jurado E, Dachs J, Duarte CM, Simó R (2008) Atmospheric deposition of organic and black carbon to the global oceans. Atmos Environ 42:7931–7939Google Scholar
  233. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini R, van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2004) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123Google Scholar
  234. Kandler K, Benker N, Bundke U, Cuevas E, Ebert M, Knippertz P, Rodríguez S, Schütz L, Weinbruch S (2007) Chemical composition and complex refractive index of Saharan mineral dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos Environ 41:8058–8074Google Scholar
  235. Karyampudi VM, Palm SP, Reagen JA, Fang H, Grant WB, Hoff RM, Moulin C, Pierce HF, Torres O, Browell EV, Melfi SH (1999) Validation of the Saharan dust plume conceptual model using lidar, Meteosat, and ECMWF data. Bull Am Meteorol Soc 80:1045–1075Google Scholar
  236. Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T (2005) Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 32, doi: 10.1029/2005GL023125
  237. Kawamura K, Sakaguchi F (1999) Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J Geophys Res 104:3501–3509Google Scholar
  238. Kawamura K, Kasukabe H, Barrie LA (1996a) Source and reaction pathways ofdicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols at polar sunrise. Atmos Environ 30:1709–1722Google Scholar
  239. Kawamura K, Semèrè R, Imai Y, Fujii Y, Hayashi M (1996b) Water soluble dicarboxylic acids and related compounds in Antarctic aerosols. J Geophys Res 101:18721–18728Google Scholar
  240. Kawamura K, Kasukabe H, Barrie LA (2010) Secondary formation of water-soluble organic acids and a-dicarbonyls and their contributions to total carbon and water-soluble organic carbon: photochemical aging of organic aerosols in the Arctic spring. J Geophys Res 115, D21306. doi: 10.1029/2010JD014299CrossRefGoogle Scholar
  241. Keene WC, Maring H, Maben JR, Kieber DJ, Pszenny AAP, Dahl EE, Izaguirre MA, Davis AJ, Long MS, Zhou X, Smoydzin L, Sander R (2007) Chemical and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface. J Geophys Res 112, D21202. doi: 10.1029/2007JD008464CrossRefGoogle Scholar
  242. Kelly JT, Wexler AS (2005) Thermodynamics of carbonates and hydrates related to heterogeneous reactions involving mineral aerosol. J Geophys Res 110, D11201. doi: 10.1029/2004jd005583CrossRefGoogle Scholar
  243. Kerminen VM, Hillamo RE, Wexler AS (1998) Model Simulations on the variability of particulate MSA to non-sea-salt sulfate ratio in the marine environment. J Atmos Chem 30:345–370Google Scholar
  244. Kim B-G, Park S-U (2001) Transport and evolution of a winter-time yellow sand observed in Korea. Atmos Environ 35:3191–3201Google Scholar
  245. King MD, Kaufman YJ, Tanré D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Am Meteorol Soc 80:2229–2259Google Scholar
  246. Kinne S, Schulz M, Textor C et al (2006) An AeroCom initial assessment optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834Google Scholar
  247. Kirkby J, Curtius J, Almeida J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433Google Scholar
  248. Klein C, Dolan JR, Rassoulzadegan F (1997) Experimental examination of the effects of rainwater on micro-bial communities in the surface of the NW Mediterranean Sea. Mar Ecol Prog Ser 158:41–50Google Scholar
  249. Kloster S, Mahowald NM, Randerson JT, Thornton PE, Hoffman FM, Levis S, Lawrence PJ, Feddema JJ, Oleson KW, Lawrence DM (2010) Fire dynamics during the 20th century simulated by the Community Land Model. Biogeosciences 7:1877–1902Google Scholar
  250. Koçak M, Mihalopoulos N, Kubilay N (2007) Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmos Environ 41:7351–7368Google Scholar
  251. Kohfeld K, LeQuere C, Harrison S, Anderson R (2005) Role of marine biology in glacial-integlacial CO2 cycles. Science 308:74–78Google Scholar
  252. Kollias P, Fairall CW, Zuidema P, Tomlinson J, Wick GA (2004) Observations of marine stratocumulus in SE Pacific during the PACS 2003 cruise. Geophys Res Lett 31, L22110. doi: 10.1029/2004GL020751CrossRefGoogle Scholar
  253. Korhonen H, Carslaw KS, Forster PM, Mikkonen S, Gordon ND, Kokkola H (2010a) Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys Res Lett 37, L02805. doi: 10.1029/2009GL041320CrossRefGoogle Scholar
  254. Korhonen H, Carslaw KS, Romakkaniemi S (2010b) Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport. Atmos Chem Phys 10:4133–4143. doi: 10.5194/acp-10-4133-2010CrossRefGoogle Scholar
  255. Kokhanovsky AA, de Leeuw G (eds) (2009) Satellite aerosol remote sensing over land. Springer-Praxis, Berlin, p 388. ISBN 978-3-540-69396-3Google Scholar
  256. Krishnamurthy A, Moore JK, Mahowald N, Luo C, Doney SC, Lindsay K, Zender CS (2009) The impacts of increasing anthro- pogenic soluble iron and nitrogen deposition on ocean biogeochemistry. Global Biogeochem Cycles 23, GB3016. doi: 10.1029/2008GB003440CrossRefGoogle Scholar
  257. Krishnamurthy A, Moore JK, Mahowald N, Luo C, Zender CS (2010) Impacts of atmospheric nutrient inputs on marine biogeochemistry. J Geophys Res 115, G01006. doi: 10.1029/2009JG001115CrossRefGoogle Scholar
  258. Kritz MA, Le Roulley J-C, Danielsen EF (1990) The China Clipper—fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California. Tellus 42B:46–61Google Scholar
  259. Krol M, Houweling S, Bregman B, van den Broek M, Segers A, van Velthoven P, Peters W, Dentener F, Bergamaschi P (2005) The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos Chem Phys 5:417–432Google Scholar
  260. Kroll JH, Donahue NM, Jimenez JL et al (2011) Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem 3:133–139Google Scholar
  261. Krueger BJ, Grassian VH, Cowin JP, Laskin A (2004) Heterogeneous chemistry of individual mineral dust particles from different dust source regions: the importance of particle mineralogy. Atmos Environ 38:6253–6261Google Scholar
  262. Kulmala M, Suni T, Lehtinen KEJ, Dal Maso M, Boy M, Reissell A, Rannik U, Aalto P, Keronen P, Hakola H, Back JB, Hoffmann T, Vesala T, Hari P (2004) A new feedback mechanism linking forests, aerosols, and climate. Atmos Chem Phys 4:557–562Google Scholar
  263. Kumar A, Sudheer AK, Sarin MM (2008) Chemical characteristics of aerosols in MABL of Bay of Bengal and Arabian Sea during spring inter-monsoon: a comparative study. Springer, Heidelberg, p 8, ALLEMAGNEGoogle Scholar
  264. Laghdass M, Blain S, Besseling M, Catala P, Guieu C, Obernosterer I (2011) Impact of Saharan dust deposition on the bacterial diversity and activity in the NW Mediterranean Sea. Aquat Microb Ecol 62:201–213Google Scholar
  265. Lam P, Bishop J (2008) The continental margin is a key sources of iron to the North Pacific Ocean. Geophys Res Lett 35, doi: 10.1029/2008GL033294Google Scholar
  266. Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039Google Scholar
  267. Lambe AT, Miracolo MA, Hennigan CJ, Robinson AL, Donahue NM (2009) Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-Alkanes, Hopanes, and Steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. Environ Sci Technol 43:8794–8800Google Scholar
  268. Landing WM, Paytan A (2010) Aerosol chemistry and impacts on the ocean. Mar Chem 120:1–3Google Scholar
  269. Langmann BC, Scannell C, O’Dowd CD (2008) Organic matter contribution to marine aerosols and cloud condensation nuclei. Atmos Environ. doi: 10.1016/j.atmosenv.2008.09.002CrossRefGoogle Scholar
  270. Langmann B, Zaksek K, Hort M, Duggen S (2010) Volcanic ash as fertiliser for the surface ocean. Atmos Chem Phys 10:3891–3899Google Scholar
  271. Lapina K, Heald CL, Spracklen DV, Arnold SR, Allan JD, Coe H, McFiggans G, Zorn SR, Drewnick F, Bates TS, Hawkins LN, Russell LM, Smirnov A, O’Dowd C, Hind AJ (2011) Investigating organic aerosol loading in the remote marine environment. Atmos Chem Phys 11:8847–8860Google Scholar
  272. Laskin A, Wietsma TW, Krueger BJ, Grassian VH (2005) Heterogeneous chemistry of individual mineral dust particles with nitric acid: a combined CCSEM/EDX, ESEM, and ICP-MS study. J Geophys Res 110, doi: 10.1029/2004jd005206
  273. Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci. doi: 10.1006/Asle.2002.0048CrossRefGoogle Scholar
  274. Latham J, Smith MH (1990) Effect on global warming of wind-dependent aerosol generation at the ocean surface. Nature 347:372–373Google Scholar
  275. Latham J (2002) Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos Sci. doi: 10.1006/Asle.2002.0048CrossRefGoogle Scholar
  276. Lathière J, Hauglustaine DA, De Noblet-Ducoudré N (2005) Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys Res Lett 32, L20818. doi: 10.1029/2005GL024164CrossRefGoogle Scholar
  277. Lathière J, Hauglustaine DA, Friend A, De Noblet-Ducoudré N, Viovy N, Folberth G (2006) Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos Chem Phys 6:2129–2146Google Scholar
  278. Law CS, Woodward EMS, Ellwood MJ, Marriner A, Bury SJ, Safic KA (2011) Response of surface nutrient inventories and nitrogen fixation to a tropical cyclone in the southwest Pacific. Limnol Oceanogr 56:1372–1385Google Scholar
  279. Law CS, Brévière E, de Leeuw G, Garçon V, Guieu C, Kieber D, Kontradowitz S, Paulmier A, Quinn P, Saltzman E, Stefels J, von Glasow R (2013) Evolving research directions in Surface Ocean-Lower Atmosphere (SOLAS) Science. Environ Chem 10:1–16, http://dx.doi.org/10.1071/EN12159Google Scholar
  280. Leaitch WR, Macdonald AM, Anlauf KG, Liu PSK, Toom-Sauntry D, Li SM, Liggio J, Hayden K, Wasey MA, Russell LM, Takahama S, Liu S, van Donkelaar A, Duck T, Martin RV, Zhang Q, Sun Y, McKendry I, Shantz NC, Cubison M (2009) Evidence for Asian dust effects from aerosol plume measurements during INTEX-B 2006 near Whistler, BC. Atmos Chem Phys 9:3523–3546Google Scholar
  281. Lee JD, McFiggans G, Allan JD, Baker AR, Ball SM, Benton AK, Carpenter LJ, Commane R, Finley BD, Evans M, Fuentes E, Furneaux K, Goddard A, Good N, Hamilton JF, Heard DE, Herrmann H, Hollingsworth A, Hopkins JR, Ingham T, Irwin M, Jones CE, Jones RL, Keene WC, Lawler MJ, Lehmann S, Lewis AC, Long MS, Mahajan A, Methven J, Moller SJ, Müller K, Müller T, Niedermeier N, O’Doherty S, Oetjen H, Plane JMC, Pszenny AAP, Read KA, Saiz-Lopez A, Saltzman ES, Sander R, von Glasow R, Whalley L, Wiedensohler A, Young D (2010) Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the tropical North Atlantic experiments. Atmos Chem Phys 10:1031–1055. doi: 10.5194/acp-10-1031-2010CrossRefGoogle Scholar
  282. Leck C, Bigg EK (2005) Source and evolution of the marine aerosol—a new perspective. Geophys Res Lett 32, L19803. doi: 10.1029/2005GL023651CrossRefGoogle Scholar
  283. Lefevre N, Watson AJ (1999) Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations. Global Biogeochem Cycles 13:727–736Google Scholar
  284. Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452:737–740Google Scholar
  285. Lesworth T, Baker AR, Jickells T (2010) Aerosol organic nitrogen over the remote Atlantic Ocean. Atmos Environ 44:1887–1893Google Scholar
  286. Levin Z, Ganor E (1996) The effect of desert particles on cloud and rain formation in the eastern Mediterranean. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Kluwer, Dordrecht, pp 77–86Google Scholar
  287. Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements and models—a critical review. American Geophysical Union, Washington, DC, p 413Google Scholar
  288. Li WJ, Shao LY (2010) Mixing and water-soluble characteristics of particulate organic compounds in individual urban aerosol particles. J Geophys Res Atmos 115, D02301. doi: 10.1029/2009jd012575CrossRefGoogle Scholar
  289. Lin II, Hu C, Li YH, Ho TY, Fischer TP, Wong GTF, Wu J, Huang CW, Chu DA, Ko DS, Chen JP (2011) Fertilization potential of volcanic dust in the low-nutrient low-chlorophyll western North Pacific subtropical gyre: Satellite evidence and laboratory study. Global Biogeochem Cycles 25, GB1006. doi: 10.1029/2009GB003758CrossRefGoogle Scholar
  290. Lippmann M (2007) Health effects of airborne particulate matter. N Engl J Med 357:2395–2397Google Scholar
  291. Liu X, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54Google Scholar
  292. Liu X, Zhu J, Van Espen P, Adams F, Xiao R, Dong S, Li Y (2005) Single particle characterization of spring and summer aerosols in Beijing: formation of composite sulfate of calcium and potassium. Atmos Environ 39:6909–6918Google Scholar
  293. Loeb NG, Manalo-Smith N (2005) Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. J Climate 18:3506–3526Google Scholar
  294. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737Google Scholar
  295. Love RG, Miller BG, Groat SK, Hagen S, Cowie HA, Johnston PP, Hutchison PA, Soutar CA (1997) Respiratory health effects of opencast coalmining: a cross sectional study of current workers. Occup Environ Med 54(6):416–423Google Scholar
  296. Loÿe-Pilot M-D, Martin J-M (1996) Saharan dust input to the western Mediterranean: an eleven years record in Corsica. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Kluwer, Dordrecht, pp 191–199Google Scholar
  297. Loÿe-Pilot MM, Martin J-M, Morelli J (1986) Influence of Saharan dust on the rain acidity and atmospheric input to the Mediterranean Sea. Nature 321:427–428Google Scholar
  298. Luo C, Mahowald N, Meskhidze N, Chen Y, Siefert R, Baker A, Johansen A (2006) Estimation of iron solubility from observations and a global aerosol model. J Geophys Res 110, D23307, doi: 10.1029/2005JD006059, http://www.agu.org/journals/jd/jd0523/2005JD006059/
  299. Luo C, Mahowald N, Bond T, Chuang PY, Artaxo P, Siefert R, Chen Y, Schauer J (2008) Combustion iron distribution and deposition. Global Biogeochem Cycles 22, doi: 10.1029/2007GB002964Google Scholar
  300. Ma C-J, Tohno S, Kasahara M (2005) A case study of the size-resolved individual particles collected at a ground-based site on the west coast of Japan during an Asian dust storm event. Atmos Environ 39:739–747Google Scholar
  301. Ma C-J, Choi K-C (2007) A combination of bulk and single particle analyses for Asian dust, water. Air Soil Pollut 183:3–13. doi: 10.1007/s11270-006-9302-zCrossRefGoogle Scholar
  302. Mahowald NM, Luo C (2003) A less dusty future? Geophys Res Lett 30, doi:1910.1029/2003GRL017880Google Scholar
  303. Mahowald N, Baker A, Bergametti G, Brooks N, Duce R, Jickells T, Kubilay N, Prospero J, Tegen I (2005) The atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem Cycles 19, GB4025, doi:4010.1029/2004GB002402Google Scholar
  304. Mahowald NM, Muhs DR, Levis S, Rasch PJ, Yoshioka M, Zender CS, Luo C (2006) Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J Geophys Res 111, D10202. doi: 10.1029/2005JD006653CrossRefGoogle Scholar
  305. Mahowald N (2007) Anthropocene changes in desert area: sensitivity to climate model predictions. Geophys Res Lett 34, L18817Google Scholar
  306. Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008) The global distribution of atmospheric phosphorus deposition and anthropogenic impacts. Global Biogeochem Cycles 22, doi: 10.1029/2008GB003240Google Scholar
  307. Mahowald N, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, Bonnet S, Chen Y, Chuang PY, Cohen DD, Dulac F, Herut B, Johansen AM, Kubilay N, Losno R, Maenhaut W, Paytan A, Prospero JM, Shank LM, Siefert RL (2009) Atmospheric Iron deposition: global distribution, variability and human perturbations. Ann Rev Mar Sci 1:245–278Google Scholar
  308. Mahowald NM, Kloster S, Engelstaedter S, Moore JK, Mukhopadhyay S, McConnell JR, Albani S, Doney SC, Bhattacharya A, Curran MAJ, Flanner MG, Hoffman FM, Lawrence DM, Lindsay K, Mayewski PA, Neff J, Rothenberg D, Thomas E, Thornton PE, Zender CS (2010) Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmos Chem Phys 10:10875–10893Google Scholar
  309. Mahowald NM, Lindsay K, Rothenberg D, Doney SC, Moore JK, Thornton P, Randerson JT, Jones CD (2011) Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model. Biogeosciences 8:387–414Google Scholar
  310. Maier-Reimer E (1993) Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions. Global Biogeochem Cycles 7(3):645–677. doi: 10.1029/93GB01355CrossRefGoogle Scholar
  311. Mäkelä JM, Hoffmann T, Holzke C, Väkevä M, Suni T, Mattila T, Aalto PP, Tapper U, Kauppinen EI, O’Dowd CD (2002) Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. J Geophys Res 107, doi: 10.1029/2001JD000580
  312. Makkonen R, Asmi A, Kerminen V-M, Boy M, Arneth A, Hari P, Kulmala M (2012) Air pollution control and decreasing new particle formation lead to strong climate warming. Atmos Chem Phys 12:1515–1524. doi: 10.5194/acp-12-1515-2012CrossRefGoogle Scholar
  313. Mandalakis M, Stephanou EG (2002) Study of atmospheric PCB concentrations over the eastern Mediterranean Sea. J Geophys Res 107:4716. doi: 10.1029/2001JD001566CrossRefGoogle Scholar
  314. Mandavilli A (2006) Health agency backs use of DDT against malaria. Nature 443(7109):250–251Google Scholar
  315. Marañón E et al (2010) Degree of oligotrophy controls the response of microbial plankton to Saharan dust. Limnol Oceanogr 55:2339–2352Google Scholar
  316. Maring H, Savoie DL, Izaguirre MA, Custals L, Reid JS (2003) Mineral dust aerosol size distribution change during atmospheric transport. J Geophys Res 108:8592. doi: 10.1029/2002JD002536CrossRefGoogle Scholar
  317. Markaki Z, Loÿe- Pilot M-D, Violaki K, Mihalopoulos N (2010) Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Mar Chem 120:187–194Google Scholar
  318. Mårtensson EM, Nilsson ED, de Leeuw G, Cohen LH, Hansson H-C (2003) Laboratory simulations and parameterization of the primary marine aerosol production. J Geophys Res 108:4297. doi: 10.1029/2002JD002263CrossRefGoogle Scholar
  319. Marticorena B, Bergametti G, Aumont B, Callot Y, N’Doumé C, Legrand M (1997) Modeling the atmospheric dust cycle 2 Simulation of Saharan dust sources. J Geophys Res 102:4387–4404Google Scholar
  320. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13Google Scholar
  321. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplancton growth in the North-East Pacific subarctic. Nature 331:341–343Google Scholar
  322. Martin J, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802Google Scholar
  323. Maskey S, Geng H, Song YC, Hwang H, Yoon YJ, Ahn KH, Ro CU (2011) Single-particle characterization of summertime Antarctic aerosols collected at King George Island using quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques. Environ Sci Technol 45:6275–6282Google Scholar
  324. Mason BJ (1957) The physics of clouds. Clarendon Press, Oxford, 671Google Scholar
  325. Massana R, Pedrós-Alió C, Casamayor EO, Gasol JM (2001) Changes in marine bacterioplankton phylogenetic composition during incubations designed to measure biogeochemically significant parameters. Limnol Oceanogr 46:1181–1188Google Scholar
  326. Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21Google Scholar
  327. Matsuki A, Iwasaka Y, Shi G, Zhang D, Trochkine D, Yamada M, Kim Y-S, Chen B, Nagatani T, Miyazawa T, Nagatani M, Nakata H (2005) Morphological and chemical modification of mineral dust: observational insight into the heterogeneous uptake of acidic gases. Geophys Res Lett 32, L22806. doi: 10.1029/2005gl024176CrossRefGoogle Scholar
  328. Matsuki A, Quennehen B, Schwarzenboeck A, Crumeyrolle S, Venzac H, Laj P, Gomes L (2010a) Temporal and vertical variations of aerosol physical and chemical properties over West Africa: AMMA aircraft campaign in summer 2006. Atmos Chem Phys 10:8437–8451Google Scholar
  329. Matsuki A, Schwarzenboeck A, Venzac H, Laj P, Crumeyrolle S, Gomes L (2010b) Cloud processing of mineral dust: direct comparison of cloud residual and clear sky particles during AMMA aircraft campaign in summer 2006. Atmos Chem Phys 10:1057–1069Google Scholar
  330. Matsumoto K, Uyama Y, Hayano T, Uematsu M (2004) Transport and chemical transformation of anthropogenic and mineral aerosol in the marine boundary layer over the western North Pacific Ocean. J Geophys Res 109, D21206. doi: 10.1029/2004jd004696CrossRefGoogle Scholar
  331. Maxwell-Meier K, Weber R, Song C, Orsini D, Ma Y, Carmichael GR, Streets DG, 2004 (2004) Inorganic composition of fine particles in mixed mineral dust– pollution plumes observed from airborne measurements during ACE-Asia. J Geophys Res 109, D19S07. doi: 10.1029/2003jd004464CrossRefGoogle Scholar
  332. McFiggans G, Coe H, Burgess R et al (2004) Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine. Atmos Chem Phys 4:701–713Google Scholar
  333. McKendry IG, Macdonald AM, Leaitch WR, van Donkelaar A, Zhang Q, Duck T, Martin RV (2008) Trans-Pacific dust events observed at Whistler, British Columbia during INTEX-B. Atmos Chem Phys 8:6297–6307Google Scholar
  334. Meskhidze N, Chameides W, Nenes A (2005) Dust and pollution: a recipe for enhanced ocean fertiliza-tion? J Geophys Res 110, doi: 10.1029/2004JD005082
  335. Meskhidze NJX, Xu J, Gantt B, Zhang Y, Nenes A, Ghan SJ, Liu X, Easter R, Zaveri R (2011) Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation. Atmos Chem Phys 11:11689–11705Google Scholar
  336. Middlebrook AM, Murphy DM, Thomson DS (1998) Observation of organic material in individual particles at Cape Grim during the First Aerosol Characterization Experiment (ACE 1). J Geophys Res 103:16475–16483Google Scholar
  337. Mie G (1908) Beitrge zur Optik trber Medien, speziell kolloidaler Metallsungen. Ann Phys Leipsig 25:377–445Google Scholar
  338. Migon C, Sandroni V (1999) Phosphorus in rainwater: partitioning, inputs and impact on the surface coastal ocean. Limnol Oceanogr 44:1160–1165Google Scholar
  339. Mills MM, Ridame C, Davey M, La Roche J, Geider RJ (2004) Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429:292–294Google Scholar
  340. Mills MM et al (2008) Nitrogen and phosphorus co-limitation of bacterial productivity and growth in the oligotrophic subtropical North Atlantic. Limnol Oceanogr 53:824–834Google Scholar
  341. Mishchenko MI, Lacis AA, Carlson BE, Travis LD (1995) Nonsphericity of dust-like tropospheric aerosols: Implications for aerosol remote sensing and climate modelling. Geophys Res Lett 22:1077–1080Google Scholar
  342. Mochida M, Kitamori Y, Kawamura K, Nojiri Y, Suzuki K (2002) Fatty acids in the marine atmosphere: factors governing their concentrations and evaluation of organic films on sea salt particles. J Geophys Res 107:4325. doi: 10.1029/2001JD001278CrossRefGoogle Scholar
  343. Mochida M, Umemoto N, Kawamura K, Lim HJ, Turpin BJ (2007) Bimodal size distributions of various organic acids and fatty acids in the marine atmosphere: influence of anthropogenic aerosols, Asian dusts, and sea spray off the coast of East Asia. J Geophys Res Atmos 112(13), D15209. doi: 10.1029/2006jd007773CrossRefGoogle Scholar
  344. Monahan EC, O’Muircheartaigh IG (1986) Whitecaps and the passive remote sensing of the ocean surface. Int J Remote Sens 7:627–642Google Scholar
  345. Monahan EC, Spiel DE, Davidson KL (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Monahan EC, MacNiochaill G (eds) Oceanic whitecaps. D. Reidel, Norwell, pp 167–193Google Scholar
  346. Moore JK, Braucher O (2008) Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences 5:631–656Google Scholar
  347. Moore JK, Doney S, Lindsay K, Mahowald N, Michaels A (2006) Nitrogen fixation amplifies the ocean biogeochemical response to decadal timesclae variations in mineral dust deposition. Tellus 58B:560–572Google Scholar
  348. Moore CM et al (2008) Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol Oceanogr 53:291–305Google Scholar
  349. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Marañón E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci. doi: 10.1038/ngeo1765CrossRefGoogle Scholar
  350. Morgan WT, Allan JD, Bower KN, Highwood EJ, Liu D, McMeeking GR, Northway MJ, Williams PI, Krejci R, Coe H (2010) Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction. Atmos Chem Phys 10:4065–4083Google Scholar
  351. Mori I, Nishikawa M, Iwasaka Y (1998) Chemical reaction during the coagulation of ammonium sulphate and mineral particles in the atmosphere. Sci Total Environ 224:87–91Google Scholar
  352. Morris RM et al (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810Google Scholar
  353. Moulin C, Lambert CE, Dayan U, Dulac F (1997) Control of atmospheric export of dust from North Africa by the North Atlantic Oscillation. Nature 387:691–694Google Scholar
  354. Moulin C, Gordon HR, Banzon VF, Evans RH (2001) Assessment of Saharan dust absorption in the visible from SeaWiFs imagery. J Geophys Res 106:18239–18249Google Scholar
  355. Mouri H, Okada K (1993) Shattering and modification of sea-salt particles in the marine atmosphere. Geophys Res Lett 20:49–52Google Scholar
  356. Müller C, Iinuma Y, Karstensen J et al (2009) Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde Islands. Atmos Chem Phys 9:9587–9597Google Scholar
  357. Murphy DM, Cziczo DJ, Froyd KD, Hudson PK, Matthew BM, Middlebrook AM, Peltier RE, Sullivan A, Thomson DS, Weber RJ (2006) Single-particle mass spectrometry of tropospheric aerosol particles. J Geophys Res 111, D23S32. doi: 10.1029/2006jd007340CrossRefGoogle Scholar
  358. Murphy SM, Sorooshian A, Kroll JH et al (2007) Secondary aerosol formation from atmospheric reactions of aliphatic amines. Atmos Chem Phys 7:2313–2337Google Scholar
  359. Myriokefalitakis S, Vignati E, Tsigaridis K, Papadimas C, Sciare J, Mihalopoulos N, Facchini MC, Rinaldi M, Dentener FJ, Ceburnis D, Hatzianastassiou N, O’Dowd CD, van Weele M, Kanakidou M (2010) Global modelling of the oceanic source of organic aerosols. Adv Meteorol 2010:939171. doi: 10.1155/2010/939171CrossRefGoogle Scholar
  360. Nenes A, Krom M, Mihalopoulos N, Van Cappellen P, Shi Z, Bougiatioti A, Zarmpas P, Herubt B (2011) Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans. Atmos Chem Phys 11:6265–6272Google Scholar
  361. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238Google Scholar
  362. Ng NL, Canagaratna MR, Zhang Q et al (2010) Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry. Atmos Chem Phys 10:4625–4641. doi: 10.5194/acp-10-4625-2010CrossRefGoogle Scholar
  363. Ng NL, Canagaratna MR, Jimenez JL, Chhabra PS, Seinfeld JH, Worsnop DR (2011) Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos Chem Phys 11:6465–6474Google Scholar
  364. Niemi JV, Tervahattu H, Virkkula A, Hillamo R, Teinilä K, Koponen IK, Kulmala M (2005) Continental impact on marine boundary layer coarse particles over the Atlantic Ocean between Europe and Antarctica. Atmos Res 75:301–321Google Scholar
  365. Niimura N, Okada K, Fan X-B, Kenji K, Kimio A, Shi G-Y, Takahashi S (1998) Formation of Asian dust-storm particles mixed internally with sea salt in the atmosphere. J Meteorol Soc Japan 76:275–288Google Scholar
  366. Niinemets U, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335Google Scholar
  367. Niinemets Ü, Arneth A, Kuhn U, Monson RK, Peñuelas J, Staudt M (2010a) The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7:2203–2223Google Scholar
  368. Niinemets Ü, Monson RK, Arneth A, Ciccioli P, Kesselmeier J, Kuhn U, Noe SM, Penuelas J, Staudt M (2010b) The emission factor of volatile isoprenoids: caveats, model algorithms, response shapes and scaling. Biogeosciences 7:1809–1832Google Scholar
  369. Niinemets Ü, Kuhn U, Harley PC, Staudt M, Arneth A, Cescatti A, Ciccioli P, Copolovici L, Geron C, Guenther A, Kesselmeier J, Lerdau MT, Monson RK, Peñuelas J (2011) Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols. Biogeosciences 8:2209–2246Google Scholar
  370. Nilsson ED, Mårtensson EM, Van Ekeren JS, de Leeuw G, Moerman M, O'Dowd C (2007) Primary marine aerosol emissions: size resolved eddy covariance measurements with estimates of the sea salt and organic carbon fractions. Atmos Chem Phys Discuss 7:13345–13400. doi: 10.5194/acpd-7-13345-2007CrossRefGoogle Scholar
  371. Norris S, Brooks I, de Leeuw G, Smith MH, Moerman M, Lingard J (2008) Eddy covariance measurements of sea spray particles over the Atlantic Ocean. Atmos Chem Phys 8:555–563Google Scholar
  372. Norris SJ, Brooks IM, Hill MK, Brooks BJ, Smith MH, Sproson DAJ (2012) Eddy covariance measurements of the sea spray aerosol flux over the open ocean. J Geophys Res 117, D07210. doi: 10.1029/2011JD016549CrossRefGoogle Scholar
  373. Nozaki Y (1997) A fresh look at element distribution in the North Pacific. EOS, Am Geophys Union 78(21):221Google Scholar
  374. O’Dowd CD, Smith MH (1993) Physicochemical properties of aerosols over the northeast Atlantic: evidence for wind-speed-related submicron sea-salt aerosol production. J Geophys Res 98, doi: 10.1029/92JD02302Google Scholar
  375. O’Dowd CD, Smith MH, Jennings SG (1993) Submicron aerosol, radon and soot carbon characteristics over the northeast Atlantic. J Geophys Res 98:1123–1135Google Scholar
  376. O’Dowd CD, Geever M, Hill MK, Jennings SG, Smith MH (1998) New particle formation: spatial scales and nucleation rates in the coastal environment. Geophys Res Lett 25:1661–1664Google Scholar
  377. O’Dowd C, Lowe JA, Smith MH (1999a) Observations and modelling of aerosol growth in marine stratocumulus – case study. Atmos Environ 33:3053–3062Google Scholar
  378. O’Dowd CD, McFiggens G, Pirjola L, Creasey DJ, Hoell C, Smith MH, Allen B, Plane JMC, Heard DE, Lee JD, Pilling MJ, Kulmala M (1999b) On the photochemical production of new particles in the coastal boundary layer. Geophys Res Lett 26:1707–1710Google Scholar
  379. O’Dowd CD, Lowe JA, Clegg N, Smith MH, Clegg SL (2000) Modeling heterogeneous sulphate production in maritime stratiform clouds. J Geophys Res-Atmos 105(D6):7143–7160Google Scholar
  380. O’Dowd CD, Hämeri K, Mäkelä JM, Pirjola L, Kulmala M, Jennings SG, Berresheim H, Hansson H-C, de Leeuw G, Allen AG, Hewitt CN, Jackson A, Viisanen Y, Hoffmann T (2002) A dedicated study of new particle formation and fate in the coastal environment (PARFORCE): overview of objectives and initial achievements. J Geophys Res 107, doi: 10.1029/2001000555
  381. O’Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, Decesari S, Fuzzi S, Yoon YJ, Putaud J-P (2004) Biogenically driven organic contribution to marine aerosol. Nature 431:676–680Google Scholar
  382. O’Dowd CD, Langmann B, Varghese S, Scannell C, Ceburnis D, Facchini MC (2008) A combined organic–inorganic sea-spray source function. Geophys Res Letts 35, L01801. doi: 10.1029/2007GL030331CrossRefGoogle Scholar
  383. O’Dowd CD, Monahan C, Dall’Osto M (2010) On the occurrence of open ocean particle production and growth events. Geophys Res Lett 37, L19805. doi: 10.1029/2010GL044679CrossRefGoogle Scholar
  384. O’Dowd CD, de Leeuw G (2007) Marine aerosol production: a review of the current knowledge. Philos Trans Royal Soc A: Math Phys Eng Sci 365:1753–1774Google Scholar
  385. O’Dowd CD, Davison B, Lowe JA, Smith MH, Harrison RM, Hewitt CN (1997) Biogenic sulphur emissions and inferred sulphate CCN concentrations in and around Antarctica. J Geophys Res 102:12839–12854Google Scholar
  386. Okada K, Kai K (2004) Atmospheric mineral particles collected at Qira in the Taklamakan Desert, China. Atmos Environ 38:6927–6935Google Scholar
  387. Okada K, Naruse H, Tanaka T, Nemoto O, Iwasaka Y, Wu P-M, Ono A, Duce RA, Uematsu M, Merrill JT, Arao K (1990) X-ray spectrometry of individual Asian dust-storm particles over the Japanese islands and the North Pacific Ocean. Atmos Environ 24:1369–1378Google Scholar
  388. Okada K, Qin Y, Kai K (2005) Elemental composition and mixing properties of atmospheric mineral particles collected in Hohhot, China. Atmos Res 73:45–67Google Scholar
  389. Okin G, Baker A, Tegen I, Mahowald N, Dentener F, Duce R, Galloway J, Hunter K, Kanakidou M, Kubilay N, Prospero J, Sarin M, Surpipith V, Uematsu M, Zhu T (2011) Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus and iron. Global Biogeochem Cycles 25, doi: 10.1029/2010GB003858Google Scholar
  390. Olgun N, Duggen S, Croot PL, Delmelle P, Dietze H, Schacht U, Óskarsson N, Siebe C, Auer A, Garbe-Schönberg D (2011) Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean. Global Biogeochem Cycles 25, GB4001. doi: 10.1029/2009GB003761CrossRefGoogle Scholar
  391. Omar AH, Winker DM, Vaughan MA, Hu Y, Trepte CR, Ferrare RA, Lee KP, Hostetler CA, Kittaka C, Rogers RR, Kuehn RE, Liu Z (2009) The CALIPSO automated aerosol classification and lidar ratio aelection algorithm. J Atmos Ocean Technol 26(10):1994–2014Google Scholar
  392. Ooki A, Uematsu M (2005) Chemical interactions between mineral dust particles and acid gases during Asian dust events. J Geophys Res 110, D03201. doi: 10.1029/2004jd004737CrossRefGoogle Scholar
  393. Oppo C, Bellandi S, Degli Innocenti N, Stortini AM, Loglio G, Schiavuta E, Cini R (1999) Surfactant component of marine organic matter as agents for biogeochemical fractionation of pollutants transport via marine aerosol. Mar Chem 63:235–253Google Scholar
  394. Ovadnevaite J, Ceburnis D, Bialek J, Monahan C, Martucci G, Rinaldi M, Facchini MC, Berresheim H, Worsnop DR, O’Dowd C (2011a) Primary marine organic aerosol: a dichotomy of low hygroscopicity and high CCN activity. Geophys Res Lett 38, L21806. doi: 10.1029/2011GL048869CrossRefGoogle Scholar
  395. Ovadnevaite J, O’Dowd C, Dall’Osto M, Ceburnis D, Worsnop DR, Berresheim H (2011) Detecting high contributions of primary organic matter to marine aerosol: a case study. Geophys Res Lett 38, L02807. doi: 10.1029/2010GL046083CrossRefGoogle Scholar
  396. Pacifico F, Harrison SP, Jones CD, Arneth A, Sitch S, Weedon GP, Barkley MP, Palmer PI, Serça D, Potosnak M, Fu TM, Goldstein A, Bai J, Schurgers G (2011) Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under modern climate conditions. Atmos Chem Phys 11:4371–4389Google Scholar
  397. Palmer PI, Jacob DJ, Fiore AM, Martin RV, Chance K, Kurosu TP (2003) Mapping isoprene emissions over North America using formaldehyde column observations from space. J Geophys Res 108(D6):4180. doi: 10.1029/2002JD002153CrossRefGoogle Scholar
  398. Pandis SN, Russell LM, Seinfeld JH (1994) The relationship between DMS flux and CCN concentration in remote marine regions. J Geophys Res 99:16945–16957Google Scholar
  399. Parekh P, Follows MJ, Boyle E (2004) Modeling the global ocean iron cycle. Global Biogeochem Cycles 18, GB1002. doi: 10.1029/2003GB002061CrossRefGoogle Scholar
  400. Parekh P, Follows MJ, Boyle EA (2005) Decoupling of iron and phosphate in the global ocean. Global Biogeochem Cycles 19, GB2020. doi: 10.1029/2004GB002280CrossRefGoogle Scholar
  401. Passow U, De la Rocha C (2006) Accumulation of mineral ballast on organic aggregates. Global Biogeochem Cycles 20, GB1013. doi: 10.1029/2005GB002579CrossRefGoogle Scholar
  402. Paytan A, Mackey KRM, Chen Y, Limac ID, Doneyc SC, Mahowaldd N, Labiosae R, Postf AF (2009) Toxicity of atmospheric aerosols on marine phytoplankton. Proc Natl Acad Sci 106:4601–4605Google Scholar
  403. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Benders M, Chappellaz J, Davis M, Delayque G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436Google Scholar
  404. Pirjola L, O’Dowd CD, Brooks IM, Kulmala M (2000) Can new particle formation occur in the clean marine boundary layer? J Geophys Res 105:26531–26546Google Scholar
  405. Ploug H, Hvitfeld Iversen M, Fischer G (2008) Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnol Oceanogr 53:1878–1886Google Scholar
  406. Polymenakou PN, Mandalakis M, Stephanou EG, Tselepides A (2008) Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environ Heal Perspect 116(3):292–296Google Scholar
  407. Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540. doi: 10.1002/anie.200501122CrossRefGoogle Scholar
  408. Pressley S, Lamb B, Westberg H, Flaherty J, Chen J, Vogel C (2005) Long-term isoprene flux measurements above a northern hardwood forest. J Geophys Res 110, D07301. doi: 10.1029/2004JD005523CrossRefGoogle Scholar
  409. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40, doi: 10.1029/2000RG000095
  410. Pulido-Villena E, Wagener T, Guieu C (2008) Bacterial response to dust pulses in the western Mediterranean: implications for carbon cycling in the oligotrophic ocean. Global Biogeochem Cycles 22, GB1020. doi: 10.1029/2007GB003091CrossRefGoogle Scholar
  411. Pulido-Villena E, Rerolle V, Guieu C (2010) Transient fertilizing effect of dust in P-deficient LNLC surface ocean. Geophys Res Lett 37, L01603. doi: 10.1029/2009GL041415CrossRefGoogle Scholar
  412. Putaud J-P, Van Dingenen R, Dell’Acqua A, Raes F, Matta E, Decesari S, Facchini MC, Fuzzi S (2004) Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC. Atmos Chem Phys 4:889–902. doi: 10.5194/acp-4-889-2004CrossRefGoogle Scholar
  413. Quinn PK, Bates TS (2005) Regional aerosol properties: comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. J Geophys Res 110, D14202. doi: 10.1029/2004jd004755CrossRefGoogle Scholar
  414. Raes F (1995) Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer. J Geophys Res 100:2893–2903Google Scholar
  415. Randles CA, Russell LM, Ramaswamy V (2004) Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophys Res Lett 31, doi: 10.1029/2004GL020628
  416. Rea DK (1994) The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev Geophys 32:159–195Google Scholar
  417. Reddy MS, Boucher O, Balkanski Y, Schulz M (2005) Aerosol optical depths and direct radiative perturbations by species and source type. Geophys Res Lett 32, doi: 10.1029/2004GL021743Google Scholar
  418. Reid JS, Jonsson HH, Maring HB, Smirnov A, Savoie DL, Cliff SS, Reid EA, Livingston JM, Meier MM, Dubovik O, Tsay S-C (2003a) Comparison of size and morphological measurements of coarse mode dust particles from Africa. J Geophys Res 108:8593. doi: 10.1029/2002JD002485CrossRefGoogle Scholar
  419. Reid EA, Reid JS, Meier MM, Dunlap MR, Cliff SS, Broumas A, Perry K, Maring H (2003b) Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J Geophys Res 108, doi: 10.1029/2002JD002935
  420. Remer LA, Kleidman RG, Levy RC et al (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res 113, doi: 10.1029/2007JD009661
  421. Ridame C, Guieu C (2002) Saharan input of phosphorus to the oligotrophic water of the open western Mediterranean. Limnol Oceanogr 47:856–869Google Scholar
  422. Ridame C, Moutin T, Guieu C (2003) Does the absortion process of phosphate onto Saharan dust explain the unusual N/P ratio in the Mediterranean sea? Oceanol Acta 26:629–634Google Scholar
  423. Ridame C, Le Moal M, Guieu C, Ternon E, Biegala I, L’Helguen S, Pujo-Pay M (2011) Nutrient control of N2 fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events. Biogeosciences 8:2629–2657Google Scholar
  424. Ridame C et al (2012) Strong stimulation of N2 fixation to Saharan dust events: results from dust fertilizations in large mesocosms (in preparation)Google Scholar
  425. Ridame C, Guieu C, L’Helguen S (2013) Strong stimulation of N2 fixation in oligotrophic Mediterranean Sea: results from dust addition in large in situ mesocosms. Biogeosciences Discuss 10:10581–10613Google Scholar
  426. Ridgwell AJ, Watson A (2002) Feedback between aeolian dust, climate and atmospheric CO2 in glacial time. Paleoceanography 17, doi: 10.1029/2001PA000729Google Scholar
  427. Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548Google Scholar
  428. Rijkenberg MJA, Powell C, Dall’Osto M, Nielsdottir M, Patey M, Hill P, Baker AR, Jickells T, Harrison R, Achterberg E (2008) Changes in iron speciation following a Saharan dust event in the tropical North Atlantic Ocean. Mar Chem 110:56–67Google Scholar
  429. Rinaldi M, Decesari S, Finessi E, Giulianelli L, Carbone C, Fuzzi S, Dowd CD, Ceburnis D, Facchini MC (2010) Primary and secondary organic marine aerosol and oceanic biological activity: recent results and new perspectives for future studies. Adv Meteorol. doi: 10.1155/2010/310682CrossRefGoogle Scholar
  430. Rinaldi M, Decesari S, Carbone C, Finessi E, Fuzzi S, Ceburnis D, O’Dowd CD, Sciare J, Burrows JP, Vrekoussis M, Ervens B, Tsigaridis K, Facchini MC (2011) Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. J Geophys Res 116, D16204. doi: 10.1029/2011JD015659CrossRefGoogle Scholar
  431. Rinaldi M, Fuzzi S, Decesari S, Marullo S, Santoleri R, Provenzale A, von Hardenberg J, Ceburnis D, Vaishya A, O’Dowd CD, Facchini M (2013) Is chlorophyll-a the best surrogate for organic matter enrichment in submicron primary marine aerosol? J Geophys Res Atmos 118:1–10. doi: 10.1002/jgrd.50417CrossRefGoogle Scholar
  432. Rinne J, Back J, Hakola H (2009) Biogenic volatile organic compound emissions from the Eurasian tai-ga: current knowledge and future directions. Boreal Environ Res 14:807–826Google Scholar
  433. Rivkin RB, Anderson MR (1997) Inorganic nutrient limitation of oceanic bacterioplankton. Limnol Oceanogr 42:730–740Google Scholar
  434. Ro C-U, Hwang H, Kim H, Chun Y, Van Grieken R (2005) Single-particle characterization of four Asian dust samples collected in Korea, using low-Z particle electron probe X-ray microanalysis. Environ Sci Technol 39:1409–1419Google Scholar
  435. Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315:1259–1262Google Scholar
  436. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219Google Scholar
  437. Russell LM, Pandis SN, Seinfeld JH (1994) Aerosol production and growth in the marine boundary layer. J Geophys Res 9:20989–21003Google Scholar
  438. Russell LM, Hawkins LN, Frossard AA, Quinn PK, Bates TS (2010) Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting. PNAS 107(15):6652–6657. doi: 10.1073/pnas.0908905107Google Scholar
  439. Sage AM, Weitkamp EA, Robinson AL, Donahue NM (2008) Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions. Atmos Chem Phys 8:1139–1152Google Scholar
  440. Saito MA, Moffett JW (2001) Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Mar Chem 75:49–68Google Scholar
  441. Saiz-Lopez A, Plane JMC, McFiggans G, Williams PI, Ball SM, Bitter M, Jones RL, Hongwei C, Hoffmann T (2005) Modelling molecular iodine emissions in the coastal marine environment: the link to new particle formation. Atmos Chem Phys 5:5405–5439Google Scholar
  442. Sarmiento JL, Le Quéré C (1996) Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274:1346–1350Google Scholar
  443. Sassen K (2000) Lidar backscatter depolarization technique for cloud and aerosol research. In: Mishchenko ML (ed) Light scattering by nonspherical particles: theory, measurements, and geophysical applications. Academic, San Diego, pp 393–416Google Scholar
  444. Saunders RW, Plane JMC (2005) Formation pathways and composition of iodine oxide ultra-fine particles. Environ Chem 2:199–303. doi: 10.1071/EN05079Google Scholar
  445. Schlesinger P, Mamane Y, Grishkan I (2006) Transport of microorganisms to Israel during Saharan dust events. Aerobiologia 22:259–273Google Scholar
  446. Schmincke H-U (2004) Volcanism. Springer, Berlin/Heidelberg/New York, p 324. ISBN 3-540-43650-2Google Scholar
  447. Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer J, Held AC, Pereira JM (2008) Global emissions from wildland fires from 1960 to 2000. Global Biogeochem Cycles 22, GB2002. doi: 10.1029/2007GB003031CrossRefGoogle Scholar
  448. Schuster GL, Dubovik O, Holben BN, Clothiaux EE (2005) Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals. J Geophys Res 110, doi: 10.1029/2004JD004548
  449. Sciare J, Favez O, Oikonomou K, Sarda-Estève R, Cachier H, Kazan V (2009) Long-term observation of carbonaceous aerosols in the Austral Ocean: evidence of a marine biogenic origin. J Geophys Res 114, D15302. doi: 10.1029/2009JD011998CrossRefGoogle Scholar
  450. Sedwick P, Sholkovitz E, Church T (2007) Impact of anthropogenic combustion emissions on the frac-tional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem Geophys Geosyst 8, doi: 10.1029/2007GC001586Google Scholar
  451. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change, 2nd edn. Wiley, New YorkGoogle Scholar
  452. Seitzinger S, Harrison J, Dumont E, Beusen A, Bouwman A (2005) Sources and delivery of carbon, nitrogen and phosphorus to the coastal zone: an overview of the Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochem Cycles 19, doi: 10.1029/2005GB002606Google Scholar
  453. Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G, Van Drecht G, Dumont E, Fekete BM, Garnier J, Harrison JA (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cycles 24, doi: 10.1029/2009GB003587Google Scholar
  454. Sellegri K, Yoon YJ, Jennings SG, Pirjola L, Cautenet S, O’Dowd CD (2005) Quantification of coastal new ultra-fine particles formation from in-situ and chamber measurements during the BIOFLUX campaign. Environ Chem 2:260–270Google Scholar
  455. Sellegri K, O’Dowd CD, Yoon YJ, Jennings SG, de Leeuw G (2006) Surfactants and submicron sea spray generation. J Geophys Res 111, D22215. doi: 10.1029/2005JD006658CrossRefGoogle Scholar
  456. Shaw G (1983) Bio-controlled thermostasis involving the sulfur cycle. Clim Chang 5:297–303Google Scholar
  457. Shi Z, Zhang D, Hayashi M, Ogata H, Ji H, Fujiie W (2008) Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles. Atmos Environ 42:822–827Google Scholar
  458. Sievering H et al (1992) Removal of sulphuer from the marine boundary layer by ozone oxidation in sea-salt aerosols. Nature 360:571–573Google Scholar
  459. Simkin T, Siebert L (1994) Volcanoes of the world, 2nd edn. Geoscience Press, Tucson, p 349Google Scholar
  460. Singh HB, Kasting JF (1988) Chlorine-hydrocarbon photochemistry in the marine troposphere and lower stratosphere. J Atmos Chem 7:261–285Google Scholar
  461. Slingo A (1990) Sensitivity of the Earth’s radiation budget to changes in low clouds. Nature 343:49–51Google Scholar
  462. Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M, Cisewski B, Savoye N, Webb A, d’Ovidio F, Arrieta JM, Bathmann U, Bellerby R, Mine Berg G, Croot P, Gonzalez S, Henjes J, Herndl GJ, Hoffmann LJ, Leach H, Losch M, Mills MM, Neill C, Peeken I, Röttgers R, Sachs O, Sauter E, Schmidt MM, Schwarz J, Terbrüggen A, Wolf-Gladrow D (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319Google Scholar
  463. Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116Google Scholar
  464. Smirnov A, Holben BN, Giles DM, Slutsker I, O’Neill NT, Eck TF, Macke A, Croot P, Courcoux Y, Sakerin SM, Smyth TJ, Zielinski T, Zibordi G, Goes JI, Harvey MJ, Quinn PK, Nelson NB, Radionov VF, Duarte CM, Losno R, Sciare J, Voss KJ, Kinne S, Nalli NR, Joseph E, Krishna Moorthy K, Covert DS, Gulev SK, Milinevsky G, Larouche P, Belanger S, Horne E, Chin M, Remer LA, Kahn RA, Reid JS, Schulz M, Heald CL, Zhang J, Lapina K, Kleidman RG, Griesfeller J, Gaitley BJ, Tan Q, Diehl TL (2011) Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmos Meas Tech 4:583–597. doi: 10.5194/amt-4-583-2011CrossRefGoogle Scholar
  465. Smirnov A, Sayer AM, Holben BN, Hsu NC, Sakerin SM, Macke A, Nelson NB, Courcoux Y, Smyth TJ, Croot P, Quinn PK, Sciare J, Gulev SK, Piketh S, Losno R, Kinne S, Radionov VF (2012) Effect of wind speed on aerosol optical depth over remote oceans, based on data from the maritime aerosol network. Atmos Meas Tech 5:377–388,  10.5194/amt-5-377-2012Google Scholar
  466. Sobanska S, Coeur C, Maenhaut W, Adams F (2003) SEM-DEX characterization of tropospheric aerosols in the Negev Desert (Israel). J Atmos Chem 44:299–322Google Scholar
  467. Sofiev M, Siljamo P, Valkama I, Ilvonen M, Kukkonen J (2006) A dispersion modelling system SILAM and its evaluation against ETEX data. Atmos Environ 40:674–685Google Scholar
  468. Sofiev M, Soares J, Prank M, de Leeuw G, Kukkonen J (2011) A regional-to-global model of emission and transport of sea salt particles in the atmosphere. J Geophys Res 116, D021302. doi: 10.1029/2010JD014713CrossRefGoogle Scholar
  469. Song CH, Carmichael GR (1999) The aging process of naturally emitted aerosol (sea-salt and mineral aerosol) during long range transport. Atmos Environ 33:2203–2218Google Scholar
  470. Sorooshian A, Lu M-L, Brechtel FJ, Jonsson H, Feingold G, Flagan RC, Seinfeld JH (2007) On the source of organic acid aerosol layers above clouds. Environ Sci Technol 41:4647–4654Google Scholar
  471. Sorooshian A, Padrò LT, Nenes A et al (2009) On the link between ocean biota emissions, aerosol, and maritime clouds: airborne, ground, and satellite measurements off the coast of California. Global Biogeochem Cycles 23, GB4007Google Scholar
  472. Stavrakou T, Müller JF, De Smedt I, Van Roozendael M, van der Werf GR, Giglio L, Guenther A (2009) Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006. Atmos Chem Phys 9:3663–3679Google Scholar
  473. Stier P, Seinfeld JH, Kinne S, Boucher O (2007) Aerosol absorption and radiative forcing. Atmos Chem Phys 7:5237–5261Google Scholar
  474. Stone EA, Yoon SC, Schauer JJ (2011) Chemical characterization of fine and coarse particles in Gosan, Korea during springtime dust events. Aerosol Air Qual Res 11:31–43Google Scholar
  475. Stramska M, Marks R, Monahan EC (1990) Bubble-mediated aerosol production as a consequence of wave breaking in supersaturated (hyperoxic) seawater. J Geophys Res 95(C10):18281–18288Google Scholar
  476. Sturges WT, Shaw GE (1993) Halogens in aerosols in Central Alaska. Atmos Environ Part A Gen Top 27:2969–2977Google Scholar
  477. Su J, Jianping H, Qiang F, Minnis P, Jinming G, Jianrong B (2008) Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos Chem Phys 8:2763–2771Google Scholar
  478. Sullivan RC, Prather KA (2007) Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow. Environ Sci Technol 41:8062–8069. doi: 10.1021/es071134gCrossRefGoogle Scholar
  479. Sullivan RC, Guazzotti SA, Sodeman DA, Prather KA (2007) Direct observations of the atmospheric processing of Asian mineral dust. Atmos Chem Phys 7:1213–1236Google Scholar
  480. Sullivan RC, Moore MJK, Petters MD, Kreidenweis SM, Roberts GC, Prather KA (2009) Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos Chem Phys 9:3303–3316Google Scholar
  481. Sun Y, Zhuang G, Wang Y, Zhao X, Li J, Wang Z, An Z (2005) Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. J Geophys Res 110, D24209. doi: 10.1029/2005jd006054CrossRefGoogle Scholar
  482. Surratt JD, Lewandowski M, Offenberg JH, Jaoui M, Kleindienst TE, Edney EO, Seinfeld JH (2007) Effect of acidity on secondary organic aerosol formation from isoprene. Environ Sci Technol 41:5363–5369Google Scholar
  483. Suzuki I, Igarashi Y, Dokiya Y, Akagi T (2010) Two extreme types of mixing of dust with urban aerosols observed in Kosa particles: ‘after’ mixing and ‘on-the-way’ mixing. Atmos Environ 44:858–866Google Scholar
  484. Tagliabue A, Bopp L, Aumont O (2008) Ocean biogeochemistry exhibits contrasting responses to a large scale reduction in dust deposition. Biogeosciences 5:11–24Google Scholar
  485. Tagliabue A, Bopp L, Aumont O, Arrigo K (2009) Influence of light and temperature on the marine iron cycle: from theoretical to global modeling. Global Biogeochem Cycle 23, GB2017. doi: 10.1029/2008GB003214CrossRefGoogle Scholar
  486. Tan PV, Evans GJ, Tsai J et al (2002) On-line analysis of urban particulate matter focusing on elevated wintertime aerosol concentrations. Environ Sci Technol 36:3512–3518Google Scholar
  487. Tedetti M, Sempéré R (2006) Penetration of ultraviolet radiation in the marine environmen. A review. Photochem Photobiol 82:389–397Google Scholar
  488. Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31, L05105. doi: 10.1029/2003GL019216CrossRefGoogle Scholar
  489. Ternon E, Guieu C, Loÿe-Pilot M-D, Leblond N, Bosc E, Gasser B, Martin J, Miquel J-C (2010) The impact of Saharan dust on the particulate export in the water column of the North Western Mediterranean Sea. Biogeosciences 7:809–826Google Scholar
  490. Ternon E, Guieu C, Ridame C, L’Helguen S, Catala P (2011) Longitudinal variability of the biogeochemical role of Mediterranean aerosols in the Mediterranean Sea. Biogeosciences 8:1067–1080Google Scholar
  491. Thingstad TF, Law CS, Krom MD, Mantoura RFC, Pitta P, Psarra S, Rassoulzadegan F, Tanaka T, Wassmann P, Wexels Riser C, Zohary T (2005) Nature of phosphorus limitation in the ultraoligotrophic Eastern Mediterranean. Science 309:1068–1071. doi: 10.1126/science.1112632CrossRefGoogle Scholar
  492. Thorpe SA (1992) Bubble clouds and the dynamics of the upper ocean. Q J R Meteorol Soc 118:1–22Google Scholar
  493. Tobo Y, Zhang DZ, Nakata N, Yamada M, Ogata H, Hara K, Iwasaka Y (2009) Hygroscopic mineral dust particles as influenced by chlorine chemistry in the marine atmosphere. Geophys Res Lett 36, L05817. doi: 10.1029/2008gl036883CrossRefGoogle Scholar
  494. Tobo Y, Zhang D, Matsuki A, Iwasaka Y (2010) Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions. Proc Natl Acad Sci 107:17905–17910. doi: 10.1073/pnas.1008235107CrossRefGoogle Scholar
  495. Tomlinson JM, Li R, Collins DR (2007) Physical and chemical properties of the aerosol within the southeastern Pacific marine boundary layer. J Geophys Res 112, D12211. doi: 10.1029/2006JD007771CrossRefGoogle Scholar
  496. Trochkine D, Iwasaka Y, Matsuki A, Yamada M, Kim YS, Nagatani T, Zhang D, Shi GY, Shen Z (2003) Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan. J Geophys Res 108, doi: 10.1029/2002jd003268
  497. Tursic J, Podkrajsek B, Grgic I, Ctyroky P, Berner A, Dusek U, Hitzenberger R (2006) Chemical composition and hygroscopic properties of size-segregated aerosol particles collected at the Adriatic coast of Slovenia. Chemosphere 63:1193–1202Google Scholar
  498. Tyree CA, Hellion VM, Alexandrova OA, Allen JO (2007) Foam droplets generated from natural and artificial seawaters. J Geophys Res 112, D12204. doi: 10.1029/2006JD007729CrossRefGoogle Scholar
  499. Uematsu M, Duce RA, Prospero JM (1985) Deposition of atmospheric mineral particles in the North Pacific Ocean. J Atmos Chem 3:123–138Google Scholar
  500. Usher CR, Al-Hosney H, Carlos-Cuellar S, Grassian VH (2002) A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. J Geophys Res 107:4713. doi: 10.1029/2002jd002051CrossRefGoogle Scholar
  501. Usher CR, Michel AE, Grassian VH (2003) Reactions on mineral dust. Chem Rev 103:4883–4939Google Scholar
  502. Van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6:3423–3441Google Scholar
  503. Van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi: 10.5194/acp-10-11707-2010CrossRefGoogle Scholar
  504. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi: 10.1007/s10584-011-0148-zCrossRefGoogle Scholar
  505. Venkatathnam K, Ryan WBF (1971) Dispersal patterns of clay minerals in the sediments of the Eastern Mediterranean Sea. Mar Geol 11:261–282Google Scholar
  506. Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Mar Chem 92:67–85Google Scholar
  507. Vignati E, Wilson J, Stier P (2004) M7: an efficient size resolved aerosol microphysics module for large-scale aerosol transport models. J Geophys Res 109, doi: 10.1029/2003JD004485Google Scholar
  508. Vignati E, Facchini MC, Rinaldi M, Scannell C, Ceburnis D, Sciare J, Kanakidou M, Myriokefalitakis S, Dentener F, O’Dowd CD (2010) Global scale emission and distribution of sea spray aerosol: sea-salt and organic enrichment. Atmos Environ 44, doi: 10.1016/j.atmosenv.2009.11.013Google Scholar
  509. Vogt R, Crutzen PJ, Sander R (1996) A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 383:327–330Google Scholar
  510. Volkamer R, San Martini F, Molina LT, Salcedo D, Jimenez JL, Molina MJ (2007) A missing sink for gas-phase glyoxal in Mexico city: formation of secondary organic aerosol. Geophys Res Lett 34, L19807. doi: 10.1029/2007gl030752CrossRefGoogle Scholar
  511. Wagener T, Pulido-Villena E, Guieu C (2008) Dust iron dissolution in seawater: results from a one-year time-series in the Mediterranean Sea. Geophys Res Lett 35, L16601. doi: 10.1029/2008GL034581CrossRefGoogle Scholar
  512. Wagener T, Guieu C, Leblond N (2010) Effects of dust deposition on iron cycle in the surface Mediterranean Sea: results from a mesocosm seeding experiment. Biogeosciences 7:3769–3781Google Scholar
  513. Wang C, Corbett JJ, Firestone J (2008) Improving spatial representation of global ship emissions inventories. Environ Sci Technol 42:193–199. doi: 10.1021/es0700799CrossRefGoogle Scholar
  514. Wang G, Kawamura K, Lee M (2009) Comparison of organic compositions in dust storm and normal aerosol samples collected at Gosan, Jeju Island, during spring 2005. Atmos Environ 43:219–227Google Scholar
  515. Wang Q, Zhuang G, Li J, Huang K, Zhang R, Jiang Y, Lin Y, Fu JS (2011) Mixing of dust with pollution on the transport path of Asian dust – revealed from the aerosol over Yulin, the north edge of Loess Plateau. Sci Total Environ 409:573–581Google Scholar
  516. Waquet F, Riédi J, Labonnote LC, Goloub P, Cairns B, Deuzé JL, Tanré D (2009) Aerosol remote sensing over clouds using the A-Train observations. J Atmos Sci 66:2468–2480Google Scholar
  517. Watson AJ, Bakker DCE, Ridgwell AJ, Boyd PW, Law CS (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–733Google Scholar
  518. Willey JD, Kieber RJ, Eyman MS, Avery GB (2000) Rainwater dissolved organic carbon: concentrations and global flux. Global Biogeochem Cycles 14:139–148Google Scholar
  519. Wilson TM, Cole JW, Sreward C (2011) Ash storms: impact of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239Google Scholar
  520. Winker DM, Pelon J, Coakley JA, Ackerman SA, Charlson RJ, Colarco PR, Flamant P, Fu Q, Hoff R, Kittaka C, Kubar TL, LeTreut H, McCormick MP, Megie G, Poole L, Powell K, Trepte C, Vaughan MA, Wielicki BA (2010) The CALIPSO mission: a global 3D view of aerosols and clouds. Bull Am Meteorol Soc 91:1211–1229Google Scholar
  521. Witek ML, Flatau PJ, Teixeira J, Westphal DL (2007a) Coupling an ocean wave model with a global aerosol transport model: a sea salt aerosol parameterization perspective. Geophys Res Lett 34, L14806. doi: 10.1029/2007GL030106CrossRefGoogle Scholar
  522. Witek ML, Flatau PJ, Quinn PK, Westphal DL (2007b) Global sea-salt modeling: results and validation against multicampaign shipboard measurements. J Geophys Res 112, D08215. doi: 10.1029/2006JD007779CrossRefGoogle Scholar
  523. Wolff EW, Fischer H, Fundel F, Ruth U, Twarloh B, Littot GC, Mulvaney R, Röthlisberger R, de Angelis M, Boutron CF, Hansson M, Jonsell U, Hutterli MA, Lambert F, Kaufmann P, Stauffer B, Stocker TF, Steffensen JP, Bigler M, Siggaard-Andersen ML, Udisti R, Becagli S, Castellano E, Severi M, Wagenbach D, Barbante C, Gabrielli P, Gaspari V (2006) Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440:491–496. doi: 10.1038/nature04614CrossRefGoogle Scholar
  524. Woodcock AH (1948) Note concerning human respiratory irritation associated with high concentrations of plankton and mass mortality of marine organism. J Mar Res 7:56–62Google Scholar
  525. Wu J, Sunda W, Boyle E, Karl D (2000) Phosphate depletion in the western North Atlantic Ocean. Science 289:759–762Google Scholar
  526. Wu J, Boyle E, Sunda W, Wen LS (2001) Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific. Science 293:847–849Google Scholar
  527. Wuttig K, Wagener T, Bressac M, Dammshäuser A, Streu P, Guieu C, Croot PL (2013) Impacts of dust deposition on dissolved trace metal concentrations (Mn, Al and Fe) during a mesocosm experiment. Biogeosciences 10:2583–2600. doi: 10.5194/bg-10-2583-2013CrossRefGoogle Scholar
  528. Yamato M, Tanaka H (1994) Aircraft observations of aerosols in the free marine troposphere over the North Pacific Ocean: particle chemistry in relation to air mass origin. J Geophys Res 99:5353–5377Google Scholar
  529. Yang F, Chen H, Wang X, Yang X, Du J, Chen J (2009) Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: mixing state and formation mechanism. Atmos Environ 43:3876–3882Google Scholar
  530. Yao X, Fang M, Chan CK (2003) The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmos Environ 37:743–751Google Scholar
  531. Ye Y, Wagener T, Volker C, Guieu C, Dieter A, Wolf-Gladrow DA (2011) Dust deposition: iron source or sink? A case study. Biogeosciences 8:2107–2124Google Scholar
  532. Yoon YJ, Ceburnis D, Cavalli F, Jourdan O, Putaud J-P, Facchini MC, Descari S, Fuzzi S, Sellegri K, Jennings SG, O’Dowd CD (2007) Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. J Geophys Res 112, D04206. doi: 10.1029/2005JD007044CrossRefGoogle Scholar
  533. Yu H, Kaufman YJ, Chin M, Feingold G, Remer LA, Anderson TL, Balkanski Y, Bellouin N, Boucher O, Christopher S, DeCola P, Kahn R, Koch D, Loeb N, Reddy MS, Schulz M, Takemura T, Zhou M (2006) A review of measurement-based assessment of aerosol direct radiative effect and forcing. Atmos Chem Phys 6:613–666Google Scholar
  534. Zhang D, Iwasaka Y (2001) Chlorine deposition on dust particles in marine atmosphere. Geophys Res Lett 28:3613–3616. doi: 10.1029/2001gl013333CrossRefGoogle Scholar
  535. Zhang D, Iwasaka Y (2004) Size change of Asian dust particles caused by sea salt interaction: measurements in southwestern Japan. Geophys Res Lett 31, L15102. doi: 10.1029/2004gl020087CrossRefGoogle Scholar
  536. Zhang DZ, Iwasaka Y (2006) Comparison of size changes of Asian dust particles caused by sea salt and sulphate. J Meteorol Soc Japan 84:939–947. doi: 10.2151/jmsj.84.939CrossRefGoogle Scholar
  537. Zhang D, Iwasaka Y, Shi G, Zang J, Matsuki A, Trochkine D (2003a) Mixture state and size of Asian dust particles collected at southwestern Japan in spring 2000. J Geophys Res 108:4760. doi: 10.1029/2003jd003869CrossRefGoogle Scholar
  538. Zhang D, Zang J, Shi G, Iwasaka Y, Matsuki A, Trochkine D (2003b) Mixture state of individual Asian dust particles at a coastal site of Qingdao, China. Atmos Environ 37:3895–3901Google Scholar
  539. Zhang D, Iwasaka Y, Shi G (2005a) Sea salt shifts the range sizes of Asian dust. Eos Trans Am Geophys Union 86, doi: 10.1029/2005EO500003Google Scholar
  540. Zhang R, Arimoto R, An J, Yabuki S, Sun J (2005b) Ground observations of a strong dust storm in Beijing in March 2002. J Geophys Res 110, D18S06. doi: 10.1029/2004jd004589CrossRefGoogle Scholar
  541. Zhang Q, Jimenez JL, Canagaratna MR, Allan JD, Coe H, Ulbrich I, Alfarra MR, Takami A, Middlebrook AM, Sun YL, Dzepina K, Dunlea E, Docherty K, DeCarlo PF, Salcedo D, Onasch T, Jayne JT, Miyoshi T, Shimono A, Hatakeyama S, Takegawa N, Kondo Y, Schneider J, Drewnick F, Borrmann S, Weimer S, Demerjian K, Williams P, Bower K, Bahreini R, Cottrell L, Griffin RJ, Rautiainen J, Sun JY, Zhang YM, Worsnop DR (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys Res Lett 34, L13801. doi: 10.1029/2007gl029979CrossRefGoogle Scholar
  542. Zhao XJ, Zhuang GS, Wang ZF, Sun YL, Wang Y, Yuan H (2007) Variation of sources and mixing mechanism of mineral dust with pollution aerosol – revealed by the two peaks of a super dust storm in Beijing. Atmos Res 84:265–279Google Scholar
  543. Zhao TXP, Loeb NG, Laszlo I, Zhou M (2011) Global component aerosol direct radiative effect at the top of atmosphere. Int J Remote Sens 32:633–655Google Scholar
  544. Zhou M, Okada K, Qian F, Wu PM, Su L, Casareto BE, Shimohara T (1996) Characteristics of dust-storm particles and their long-range transport from China to Japan – case studies in April 1993. Atmos Res 40:19–31Google Scholar
  545. Zhou X, Davis AJ, Kieber DJ et al (2008) Photochemical production of hydroxyl radical and hydroperoxides in water extracts of nascent marine aerosols produced by bursting bubbles from Sargasso seawater. Geophys Res Lett 35, L20803Google Scholar
  546. Zhu X, Prospero J, Millero F (1997) Diel variability of soluble Fe(II) and soluble total Fe in North Africa dust in the trade winds at Barbados. J Geophys Res 102:21297–21305Google Scholar
  547. Zhuang G, Duce R (1993) The adsorption of dissolved iron on marine aerosol particles in surface waters of the open ocean. Deep Sea Res 40:1413–1429Google Scholar
  548. Zorn SR, Drewnick F, Schott M, Hoffmann T, Borrmann S (2008) Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer. Atmos Chem Phys 8:4711–4728Google Scholar

Copyright information

© The Author(s) 2014

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Gerrit de Leeuw
    • 1
    • 2
    • 3
  • Cécile Guieu
    • 4
  • Almuth Arneth
    • 5
  • Nicolas Bellouin
    • 6
  • Laurent Bopp
    • 7
  • Philip W. Boyd
    • 8
  • Hugo A. C. Denier van der Gon
    • 3
  • Karine V. Desboeufs
    • 9
  • François Dulac
    • 10
  • M. Cristina Facchini
    • 11
  • Brett Gantt
    • 12
  • Baerbel Langmann
    • 13
  • Natalie M. Mahowald
    • 14
  • Emilio Marañón
    • 15
  • Colin O’Dowd
    • 16
  • Nazli Olgun
    • 17
  • Elvira Pulido-Villena
    • 18
  • Matteo Rinaldi
    • 11
  • Euripides G. Stephanou
    • 19
  • Thibaut Wagener
    • 18
  1. 1.Climate Change UnitFinnish Meteorological InstituteHelsinkiFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.TNOUtrechtThe Netherlands
  4. 4.Laboratoire d’ Océanographie de Villefranche, CNRSUniversity Paris 6Villefranche sur MerFrance
  5. 5.Division of Ecosystem-Atmosphere InteractionsKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental ResearchGarmisch-PartenkirchenGermany
  6. 6.Met Office Hadley CentreExeterUK
  7. 7.Centre National de la Recherche Scientifique (CNRS)Laboratoire des Sciences du Climat et l’Environnement (LSCE)Gif sur YvetteFrance
  8. 8.Institute for Marine and Antarctic ScienceUniversity of TasmaniaHobartAustralia
  9. 9.LISA/IPSL, CNRSUniversités Paris Est Créteil and Paris DiderotCréteilFrance
  10. 10.LSCE/IPSL, CNRS/CEA/UVSQGif sur YvetteFrance
  11. 11.Institute of Atmospheric Sciences and Climate (ISAC)National Research Council (CNR)BolognaItaly
  12. 12.North Carolina State UniversityRaleighUSA
  13. 13.Institute of GeophysicsUniversity of HamburgHamburgGermany
  14. 14.Department of Earth and Atmospheric SciencesCornell UniversityIthacaUSA
  15. 15.Departamento de Ecología y Biología Animal, Facultad de Ciencias del MarUniversity of VigoVigoSpain
  16. 16.School of PhysicsNational University of IrelandGalwayIreland
  17. 17.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  18. 18.CNRS/INSU, IRD, Mediterranean Institute of Oceanography (MIO)Aix Marseille UniversitéMarseilleFrance
  19. 19.Department of ChemistryUniversity of Crete, Environmental Chemical Processes Laboratory (ECPL)Voutes-HeraklionGreece

Personalised recommendations